Skip to main content
Download PDF
- Main
Single-cell approaches for molecular classification of endocrine tumors.
Published Web Location
https://doi.org/10.1097/cco.0000000000000246Abstract
Purpose of review
In this review, we summarize recent developments in single-cell technologies that can be employed for the functional and molecular classification of endocrine cells in normal and neoplastic tissue.Recent findings
The emergence of new platforms for the isolation, analysis, and dynamic assessment of individual cell identity and reactive behavior enables experimental deconstruction of intratumoral heterogeneity and other contexts where variability in cell signaling and biochemical responsiveness inform biological function and clinical presentation. These tools are particularly appropriate for examining and classifying endocrine neoplasias, as the clinical sequelae of these tumors are often driven by disrupted hormonal responsiveness secondary to compromised cell signaling. Single-cell methods allow for multidimensional experimental designs incorporating both spatial and temporal parameters with the capacity to probe dynamic cell signaling behaviors and kinetic response patterns dependent upon sequential agonist challenge.Summary
Intratumoral heterogeneity in the provenance, composition, and biological activity of different forms of endocrine neoplasia presents a significant challenge for prognostic assessment. Single-cell technologies provide an array of powerful new approaches uniquely well suited for dissecting complex endocrine tumors. Studies examining the relationship between clinical behavior and tumor compositional variations in cellular activity are now possible, providing new opportunities to deconstruct the underlying mechanisms of endocrine neoplasia.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%