Skip to main content
eScholarship
Open Access Publications from the University of California

Development of a CRISPR/Cas9n-based tool for metabolic engineering of Pseudomonas putida for ferulic acid-to-polyhydroxyalkanoate bioconversion

Abstract

Ferulic acid is a ubiquitous phenolic compound in lignocellulose, which is recognized for its role in the microbial carbon catabolism and industrial value. However, its recalcitrance and toxicity poses a challenge for ferulic acid-to-bioproducts bioconversion. Here, we develop a genome editing strategy for Pseudomonas putida KT2440 using an integrated CRISPR/Cas9n-λ-Red system with pyrF as a selection marker, which maintains cell viability and genetic stability, increases mutation efficiency, and simplifies genetic manipulation. Via this method, four functional modules, comprised of nine genes involved in ferulic acid catabolism and polyhydroxyalkanoate biosynthesis, were integrated into the genome, generating the KTc9n20 strain. After metabolic engineering and optimization of C/N ratio, polyhydroxyalkanoate production was increased to ~270 mg/L, coupled with ~20 mM ferulic acid consumption. This study not only establishes a simple and efficient genome editing strategy, but also offers an encouraging example of how to apply this method to improve microbial aromatic compound bioconversion.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View