Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Anti-inflammatory and Antioxidant Properties of HDLs Are Impaired in Type 2 Diabetes

Published Web Location

https://doi.org/10.2337/db11-0378
Abstract

Objective

In mice, 4F, an apolipoprotein A-I mimetic peptide that restores HDL function, prevents diabetes-induced atherosclerosis. We sought to determine whether HDL function is impaired in type 2 diabetic (T2D) patients and whether 4F treatment improves HDL function in T2D patient plasma in vitro.

Research design and methods

HDL anti-inflammatory function was determined in 93 T2D patients and 31 control subjects as the ability of test HDLs to inhibit LDL-induced monocyte chemotactic activity in human aortic endothelial cell monolayers. The HDL antioxidant properties were measured using a cell-free assay that uses dichlorofluorescein diacetate. Oxidized fatty acids in HDLs were measured by liquid chromatography-tandem mass spectrometry. In subgroups of patients and control subjects, the HDL inflammatory index was repeated after incubation with L-4F.

Results

The HDL inflammatory index was 1.42 ± 0.29 in T2D patients and 0.70 ± 0.19 in control subjects (P < 0.001). The cell-free assay was impaired in T2D patients compared with control subjects (2.03 ± 1.35 vs. 1.60 ± 0.80, P < 0.05), and also HDL intrinsic oxidation (cell-free assay without LDL) was higher in T2D patients (1,708 ± 739 vs. 1,233 ± 601 relative fluorescence units, P < 0.001). All measured oxidized fatty acids were significantly higher in the HDLs of T2D patients. There was a significant correlation between the cell-free assay values and the content of oxidized fatty acids in HDL fractions. L-4F treatment restored the HDL inflammatory index in diabetic plasma samples (from 1.26 ± 0.17 to 0.71 ± 0.11, P < 0.001) and marginally affected it in healthy subjects (from 0.81 ± 0.16 to 0.66 ± 0.10, P < 0.05).

Conclusions

In patients with T2D, the content of oxidized fatty acids is increased and the anti-inflammatory and antioxidant activities of HDLs are impaired.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View