Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

The graded module category of a generalized Weyl algebra

  • Author(s): Won, Robert
  • Advisor(s): Rogalski, Daniel
  • et al.
Abstract

The first Weyl algebra, A, is naturally Z-graded by letting deg x = 1 and deg y = -1. Sue Sierra studied gr-A, the category of graded right A-modules, computing its Picard group and classifying all rings graded equivalent to A. Paul Smith showed that ,in fact, gr-A is equivalent to the category of quasicoherent sheaves on a certain quotient stack.

In this dissertation, we generalize results of Sierra and Smith by studying the graded module category of certain generalized Weyl algebras. We show that for a generalized Weyl algebra A(f) with base ring k[z] defined by a quadratic polynomial f, the Picard group of gr-A(f) is isomorphic to the Picard group of gr-A. For each A(f), we also construct a commutative ring whose graded module category is equivalent to the quotient category qgr-A(f), the category gr-A(f) modulo its full subcategory of finite-dimensional modules.

Main Content
Current View