
UCLA
Posters

Title
Triggering on Area: A Systems Approach

Permalink
https://escholarship.org/uc/item/53g4v4dx

Authors
Benjamin Greenstein
Deborah Estrin
Eddie Kohler
et al.

Publication Date
2003

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/53g4v4dx
https://escholarship.org/uc/item/53g4v4dx#author
https://escholarship.org
http://www.cdlib.org/


Problem Description:Problem Description: Distributed discovery of large, homogenous regionsDistributed discovery of large, homogenous regions

Proposed Solution:Proposed Solution: Architect a flexible stack of system services to form a cohesiveArchitect a flexible stack of system services to form a cohesive application application 
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Introduction:Introduction: Complexity of application mandates a Complexity of application mandates a macroprogramming macroprogramming environmentenvironment
Application Challenges Architectural Challenges

Detection, Evaluation, Action
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• Efficiency vs. programmability
– Continuing challenge to implement complex distributed applications on 

systems that have been designed from the ground up for efficiency
– Today’s application developers still need to be skilled kernel hackers

• Flexibility
– Devise a flexible system so that components can be swapped out to achieve 

alternate functionalities
• Macroprogrammability

– Provide a framework for the development of sophisticated distributed 
evaluation and actuation applications 

– Provide user-level configuration via wiring and parameterization

• Homogenous region identification and area calculation
– Identify homogenous regions
– Compute the area of homogenous regions in a purely distributed fashion
– Trigger when a region satisfies a user-configurable predicate

• Application complexity
– Routing: Spanning tree formation
– Local area calculation: Delaunay triangulation or inverse neighborhood
– Aggregation: In-network weighted count
– System services: Packet transmission, ADC sampling, timers

OR

• A fire has been detected
• Is it a campfire or a forest fire?
• If the latter, locate any sprinklers nearby 

and turn them on. If there are no sprinklers, 
alert a human

When a data set cut from 
space/time is determined 
to contain a target 
phenomenon, take action

• Homogenous regions are 
connected subgraphs of  the 
communication graph in 
which nodes’ sensor values 
fall within a predefined range

• We compute the area of such 
regions

• Also used to compute area
– Derive an estimate of a node’s covering area using its transmission area 

divided by the number of communicating neighbors it has
– Build an aggregation tree to sum covering areas of all nodes in region

• Requires no location information
• Communication area estimate has a huge impact on the result 

(unless used only to compare relative sizes)
• Inverse neighborhood can overestimate area, because nodes 

near edge of network have fewer neighbors 

Architectural Components
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• Finding the optimal tree is equivalent in complexity to 
computing all-pairs shortest paths
– Cannot be solved greedily; optimal graph does not necessarily contain 

optimal substructure
• In terms of depth, random is no worse than twice the optimal
• Approximations to optimal are possible

– Construct convex hull and choose node near center of mass as root
– Form k random trees and choose best one

• Implemented a greedy formation algorithm
– If in region, set region ID to local address, parent to NULL, and hop

count to zero, then advertise
– If a node receives a message with a lower region ID or the same ID and 

lower hop count than its parent, then switch parent pointer to the source
– Version number incremented when parent dies or changes to a new 

region to prevent count-to-infinity loops

Spanning Tree

Delaunay Triangulation
• Defined as the subdivision of the network into triangles such 

that triangle vertices are nodes in the graph and the 
circumcircle of every triangle contains no vertices

• Used to compute area
– Assign each triangle to the vertex with the lowest ID
– Build an aggregation tree to sum the area of the triangles

• Requires location information
• Is consistent for any ABC in the triangulation when AB, BC, 

and AC are either:
– Communication links
– Present in the “neighborhood” of each vertex.

• Tends to underestimate area because it yields the tightest 
polygon enclosing the region, even though edge nodes might 
very well represent space beyond that polygon
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• Drives soft-state mechanisms of the various layers
• Generates NULL packets at a minimum rate

– Checks over period to see if any packets came through, and if not, generates one
• Soft-state data gets on this “elevator” on its way down the stack
• Fewer header bytes sent; fewer timers needed; reduced duplication of attributes
• Eventual consistency, however, isn’t always timely

Minimum Rate

• Add as many attributes as needed or as can fit in data portion of TOS_Msg
– Limited to eight different types of attributes in system

• Constant time inserts, tests for inclusion, linear reads
– putAttr() and getAttr() provided as inline for write and read
– Byte 0 of data portion contains bit field for test

• 1+c bytes of overhead for c attributes

Tag/Value Packet Format

TOS_Msg msg->data

Tag Field
byte

Tag
(3 bits)

Length
(5 bits)

Value
(length as specified)

Tag
(3 bits)

Length
(5 bits)

• Buffer pool
– Buffer allocation and guards handled in memory layer instead of in every component
– alloc(), free(), copyAlloc()

• Implicit deallocation
– Occurs when SendMsg.send () fails and immediately after upcalls to SendMsg.sendDone() and 

ReceiveMsg.receive()
• Queued send absorbs bursts 
• Sits directly above AM layer

Memory Layer
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