UCLA

Posters

Title

Triggering on Area: A Systems Approach

Permalink

https://escholarship.org/uc/item/53g4v4dx

Authors

Benjamin Greenstein Deborah Estrin Eddie Kohler et al.

Publication Date

2003

Triggering on Area: A Systems Approach

Ben Greenstein, David Culler, Deborah Estrin, Eddie Kohler Laboratory for Embedded Collaborative Systems – http://lecs.cs.ucla.edu

Introduction: Complexity of application mandates a macroprogramming environment

Application Challenges

· Homogenous region identification and area calculation

- Identify homogenous regions
- Compute the area of homogenous regions in a purely distributed fashion
- Trigger when a region satisfies a user-configurable predicate

· Application complexity

- Routing: Spanning tree formation
- Local area calculation: Delaunay triangulation or inverse neighborhood
- Aggregation: In-network weighted count
- System services: Packet transmission, ADC sampling, timers

Architectural Challenges

Efficiency vs. programmability

- Continuing challenge to implement complex distributed applications on systems that have been designed from the ground up for efficiency
- Today's application developers still need to be skilled kernel hackers

Flexibility

Devise a flexible system so that components can be swapped out to achieve alternate functionalities

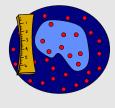
Macroprogrammability

- Provide a framework for the development of sophisticated distributed evaluation and actuation applications
- Provide user-level configuration via wiring and parameterization

Problem Description: Distributed discovery of large, homogenous regions

Detection, Evaluation, Action

When a data set cut from space/time is determined to contain a target phenomenon, take action


- · A fire has been detected
- Is it a campfire or a forest fire?
- · If the latter, locate any sprinklers nearby and turn them on. If there are no sprinklers,

OR

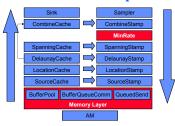
- · Homogenous regions are connected subgraphs of the communication graph in which nodes' sensor values fall within a predefined range
- · We compute the area of such regions

Proposed Solution: Architect a flexible stack of system services to form a cohesive application

Delaunay Triangulation

- · Defined as the subdivision of the network into triangles such that triangle vertices are nodes in the graph and the circumcircle of every triangle contains no vertices
- Used to compute area
 - Assign each triangle to the vertex with the lowest ID
 - Build an aggregation tree to sum the area of the triangles
- Requires location information
- Is consistent for any $\triangle ABC$ in the triangulation when AB. BC. and AC are either:
 - Communication links
 - Present in the "neighborhood" of each vertex.
- Tends to underestimate area because it yields the tightest polygon enclosing the region, even though edge nodes might very well represent space beyond that polygon

Inverse Neighborhood


- Also used to compute area
 - Derive an estimate of a node's covering area using its transmission area divided by the number of communicating neighbors it has
 - Build an aggregation tree to sum covering areas of all nodes in region
- · Requires no location information
- Communication area estimate has a huge impact on the result (unless used only to compare relative sizes)
- · Inverse neighborhood can overestimate area, because nodes near edge of network have fewer neighbors

Spanning Tree

- Finding the optimal tree is equivalent in complexity to
 - computing all-pairs shortest paths
 Cannot be solved greedily; optimal graph does not necessarily contain optimal substructure
- In terms of depth, random is no worse than twice the optimal Approximations to optimal are possible
- Construct convex hull and choose node near center of mass as root
- Form k random trees and choose best one Implemented a greedy formation algorithm
- - If in region, set region ID to local address, parent to NULL, and hop count to zero, then advertise If a node receives a message with a lower region ID or the same ID and lower hop count than its parent, then switch parent pointer to the source
 - Version number incremented when parent dies or changes to a new region to prevent count-to-infinity loops

Architectural Components

Minimum Rate

- · Drives soft-state mechanisms of the various lavers
- Generates NULL packets at a minimum rate
- Checks over period to see if any packets came through, and if not, generates one
- Soft-state data gets on this "elevator" on its way down the stack
- Fewer header bytes sent; fewer timers needed; reduced duplication of attributes
- Eventual consistency, however, isn't always timely

Tag/Value Packet Format

- Add as many attributes as needed or as can fit in data portion of TOS Msg
- Limited to eight different types of attributes in syste
- Constant time inserts, tests for inclusion, linear reads putAttr() and getAttr() provided as inline for write and reac
- Byte 0 of data portion contains bit field for test
- 1+c bytes of overhead for c attributes

Memory Layer

- Buffer pool
- Buffer allocation and guards handled in memory layer instead of in every component alloc(), free(), copyAlloc()
- Implicit deallocation
 - Occurs when SendMsg.send() fails and immediately after upcalls to SendMsg.sendDone() and ReceiveMsg.receive()
- Oueued send absorbs bursts
- Sits directly above AM layer