
UCLA
Posters

Title
Triggering on Area: A Systems Approach

Permalink
https://escholarship.org/uc/item/53g4v4dx

Authors
Benjamin Greenstein
Deborah Estrin
Eddie Kohler
et al.

Publication Date
2003

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/53g4v4dx
https://escholarship.org/uc/item/53g4v4dx#author
https://escholarship.org
http://www.cdlib.org/

Problem Description:Problem Description: Distributed discovery of large, homogenous regionsDistributed discovery of large, homogenous regions

Proposed Solution:Proposed Solution: Architect a flexible stack of system services to form a cohesiveArchitect a flexible stack of system services to form a cohesive application application

Triggering on Area: A Systems ApproachTriggering on Area: A Systems Approach
Ben Greenstein, David Culler, Deborah Estrin, Eddie Kohler

Laboratory for Embedded Collaborative Systems – http://lecs.cs.ucla.edu

Introduction:Introduction: Complexity of application mandates a Complexity of application mandates a macroprogramming macroprogramming environmentenvironment
Application Challenges Architectural Challenges

Detection, Evaluation, Action

UCLA UCLA –– UCR UCR –– Caltech Caltech –– USC USC –– CSU CSU –– JPL JPL –– UC MercedUC Merced

Center for Embedded Networked SensingCenter for Embedded Networked Sensing

• Efficiency vs. programmability
– Continuing challenge to implement complex distributed applications on

systems that have been designed from the ground up for efficiency
– Today’s application developers still need to be skilled kernel hackers

• Flexibility
– Devise a flexible system so that components can be swapped out to achieve

alternate functionalities
• Macroprogrammability

– Provide a framework for the development of sophisticated distributed
evaluation and actuation applications

– Provide user-level configuration via wiring and parameterization

• Homogenous region identification and area calculation
– Identify homogenous regions
– Compute the area of homogenous regions in a purely distributed fashion
– Trigger when a region satisfies a user-configurable predicate

• Application complexity
– Routing: Spanning tree formation
– Local area calculation: Delaunay triangulation or inverse neighborhood
– Aggregation: In-network weighted count
– System services: Packet transmission, ADC sampling, timers

OR

• A fire has been detected
• Is it a campfire or a forest fire?
• If the latter, locate any sprinklers nearby

and turn them on. If there are no sprinklers,
alert a human

When a data set cut from
space/time is determined
to contain a target
phenomenon, take action

• Homogenous regions are
connected subgraphs of the
communication graph in
which nodes’ sensor values
fall within a predefined range

• We compute the area of such
regions

• Also used to compute area
– Derive an estimate of a node’s covering area using its transmission area

divided by the number of communicating neighbors it has
– Build an aggregation tree to sum covering areas of all nodes in region

• Requires no location information
• Communication area estimate has a huge impact on the result

(unless used only to compare relative sizes)
• Inverse neighborhood can overestimate area, because nodes

near edge of network have fewer neighbors

Architectural Components

SourceCache SourceStamp

AM

Memory Layer
QueuedSendBufferPool BufferQueueComm

SpanningCache SpanningStamp

CombineCache CombineStamp

MinRate

Sink Sampler

DelaunayCache

LocationStamp

DelaunayStamp

LocationCache

• Finding the optimal tree is equivalent in complexity to
computing all-pairs shortest paths
– Cannot be solved greedily; optimal graph does not necessarily contain

optimal substructure
• In terms of depth, random is no worse than twice the optimal
• Approximations to optimal are possible

– Construct convex hull and choose node near center of mass as root
– Form k random trees and choose best one

• Implemented a greedy formation algorithm
– If in region, set region ID to local address, parent to NULL, and hop

count to zero, then advertise
– If a node receives a message with a lower region ID or the same ID and

lower hop count than its parent, then switch parent pointer to the source
– Version number incremented when parent dies or changes to a new

region to prevent count-to-infinity loops

Spanning Tree

Delaunay Triangulation
• Defined as the subdivision of the network into triangles such

that triangle vertices are nodes in the graph and the
circumcircle of every triangle contains no vertices

• Used to compute area
– Assign each triangle to the vertex with the lowest ID
– Build an aggregation tree to sum the area of the triangles

• Requires location information
• Is consistent for any ABC in the triangulation when AB, BC,

and AC are either:
– Communication links
– Present in the “neighborhood” of each vertex.

• Tends to underestimate area because it yields the tightest
polygon enclosing the region, even though edge nodes might
very well represent space beyond that polygon

Inverse Neighborhood
r

1

2

+
×

=
N

rAQ
π

Q

• Drives soft-state mechanisms of the various layers
• Generates NULL packets at a minimum rate

– Checks over period to see if any packets came through, and if not, generates one
• Soft-state data gets on this “elevator” on its way down the stack
• Fewer header bytes sent; fewer timers needed; reduced duplication of attributes
• Eventual consistency, however, isn’t always timely

Minimum Rate

• Add as many attributes as needed or as can fit in data portion of TOS_Msg
– Limited to eight different types of attributes in system

• Constant time inserts, tests for inclusion, linear reads
– putAttr() and getAttr() provided as inline for write and read
– Byte 0 of data portion contains bit field for test

• 1+c bytes of overhead for c attributes

Tag/Value Packet Format

TOS_Msg msg->data

Tag Field
byte

Tag
(3 bits)

Length
(5 bits)

Value
(length as specified)

Tag
(3 bits)

Length
(5 bits)

• Buffer pool
– Buffer allocation and guards handled in memory layer instead of in every component
– alloc(), free(), copyAlloc()

• Implicit deallocation
– Occurs when SendMsg.send () fails and immediately after upcalls to SendMsg.sendDone() and

ReceiveMsg.receive()
• Queued send absorbs bursts
• Sits directly above AM layer

Memory Layer

	Triggering on Area: A Systems Approach

