
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Delta-Sigma FDC Based Fractional-N PLLs with Multi-Rate Quantizing Dynamic Element
Matching

Permalink
https://escholarship.org/uc/item/53q993wg

Author
Venerus, Christian

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/53q993wg
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Delta-Sigma FDC Based Fractional-N PLLs

with

Multi-Rate Quantizing Dynamic Element Matching

A dissertation submitted in partial satisfaction of the requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Electronic Circuits and Systems)

by

Christian Venerus

Committee in charge:

Professor Ian A. Galton, Chair
Professor Peter M. Asbeck
Professor James F. Buckwalter
Professor Bruce K. Driver
Professor Thomas T. Liu

2013

Copyright

Christian Venerus, 2013

All rights reserved.

iii

The dissertation of Christian Venerus is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2013

iv

DEDICATION

To my parents, Graziella and Nevio.

v

TABLE OF CONTENTS

Signature Page ... iii

Dedication .. iv

Table of Contents .. v

List of Figures ..viii

List of Tables... x

Acknowledgements.. xi

Vita...xiii

Abstract of the Dissertation ... xiv

Chapter 1 Delta-Sigma FDC Based Fractional-N PLLs .. 1

I. Introduction... 1

II. Background Information... 4

A. Phase Noise in Fractional-N PLLs... 4

B. ΔΣ Fractional-N PLLs.. 5

III. Overview of The FDC-PLL.. 7

A. System Description.. 7

B. Digital Loop Filter ... 9

C. ΔΣ-PLL and FDC-PLL Capacitance Comparison 10

IV. The FDC-PLL Linearized Model.. 11

A. Model Derivation... 11

B. Phase Noise PSD Calculation.. 15

C. Loop Filter Design ... 18

V. Design Example.. 22

VI. Appendix... 25

vi

A. Reference Oscillator Zero-Crossing Time Derivation 26

B. Divider Output Zero-Crossing Time Derivation........................ 26

C. Charge Pump Output Derivation ... 28

D. Delta-Sigma Modulator Equivalence and Implications............. 30

Acknowledgements ... 33

Figures... 34

Tables .. 37

References ... 38

Chapter 2 Multi-Rate Quantizing Dynamic Element Matching For Oversampling
Digital-to-Analog Conversion... 41

I. Introduction... 41

II. Continuous-Time DEM DAC Overview .. 43

A. Ideal Continuous-Time DAC Behavior 43

B. Ideal Continuous-Time DAC Behavior 44

C. A General Oversampling DEM DAC .. 47

III. Multi-Rate Quantizing DEM .. 48

A. Problem Statement ... 48

B. A General MRQ-DEM DAC ... 49

IV. A Multi-Rate Quantizing DEM DAC Example 56

A. The Underlying DEM DAC... 56

B. MRQ-DEM DAC Functional Description................................. 60

C. Signal Path Bypasses the Fast 1-bit DACs 62

D. A Comparable Conventional ΔΣ DAC Example 63

E. Performance Comparison .. 64

Acknowledgements ... 67

Figures... 68

References ... 76

vii

Chapter 3 A 3-4 GHz GSM-Compliant 1.0/1.2V ΔΣ FDCBased Fractional N PLL
in 65 nm CMOS Technology .. 79

I. Architecture Overview.. 79

II. ΔΣ FDC Circuit Implementation Details .. 82

A. Charge Pump.. 82

B. Analog to Digital Converter .. 84

C. Divider ... 84

III. Quantization Noise Cancellation .. 87

A. General Quantization Noise Cancelling Architecture................ 88

B. Practical Quantization Noise Cancelling Algorithm
Implementation .. 89

IV. Digital Loop Controller .. 91

V. Multi-rate Quantizing DEM Encoder Hardware Efficient
Implementation ... 92

A. Adder-free Non-segmenting Switching Blocks 94

B. Adder-free Local DEM Encoder.. 95

C. Adder-free Segmenting Switching Blocks................................. 95

D. Adder-free Multi-rate Quantizing DEM Encoder...................... 97

E. MRQ-DEM ΔΣ Modulator Timing.. 102

F. Period Distortion Compensating ΔΣ Modulator 104

VI. Digitally Controlled Oscillator ... 106

VII. Measurement Results... 109

Acknowledgements ..111

Figures..111

Tables .. 126

References ... 128

viii

LIST OF FIGURES

Figure 1: A delta-sigma modulator based fractional-N PLL (ΔΣ-PLL) 34

Figure 2: A delta-sigma FDC based fractional-N PLL (FDC-PLL)............................ 34

Figure 3: The implicit second-order delta-sigma modulator implemented by the ΔΣ
FDC followed by the α adder and accumulator of the digital loop controller
... 35

Figure 4: Phase noise model of the FDC-PLL.. 35

Figure 5: PSD of θDCO(t) used in the design and simulation of the FDC-PLL example
... 35

Figure 6: Calculated PSD plots (smooth curves) and simulated PSD plots (jagged
curves) of the FDC-PLL output phase noise resulting from each of the noise
sources individually and all together... 36

Figure 7: Calculated and simulated PSD plots of the FDC-PLL output phase noise
with all noise sources with and without the LLPF(z) portion of the loop filter
... 36

Figure 8: Calculated PSD plot of the FDC-PLL output phase noise with all noise
sources, and the corresponding simulated PSD with several non-ideal circuit
effects taken into account in addition to noise .. 37

Figure 9: A general DEM DAC architecture... 68

Figure 10: A general conventional oversampling DEM DAC architecture. 68

Figure 11: A general oversampling DEM DAC based on the proposed multi-rate
quantizing DEM encoder. .. 69

Figure 12: The underlying DEM DAC from which the example MRQ-DEM DAC is
derived. .. 69

Figure 13: Structure of the DEM encoder in the underlying DEM DAC from which
the example MRQ-DEM DAC is derived. .. 70

Figure 14: Functional diagrams of (a) each segmenting switching block (b) each non-
segmenting switching block, and c) the switching sequence generator
within each switching block. ... 71

Figure 15: High-level diagram of the example MRQ-DEM DAC. 72

Figure 16: Top-level functional diagram of the modified DEM encoder in the MRQ-
DEM DAC... 73

Figure 17: Functional diagram of the dithered second-order digital ΔΣ modulator. .. 73

Figure 18: A conventional ΔΣ DAC with an input dynamic range comparable to that
of the example MRQ-DEM DAC: (a) high-level diagram of the ΔΣ DAC,

ix

(b) top-level functional diagram of the DEM encoder. 74

Figure 19: Representative output power spectra from simulations of (a) the ΔΣ DAC
and (b) the MRQ-DEM DAC with amplitude and time constant
mismatches among the 1-bit DACs. .. 75

Figure 20: Representative output power spectrum from simulation of the MRQ-DEM
DAC with DEM disabled. ... 75

Figure 21: Delta-sigma FDC-PLL prototype architecture ...111

Figure 22: Simplified timing diagram of the FDC-PLL synthesizer prototype........ 112

Figure 23: Charge pump circuit implementation .. 112

Figure 24: Comparator for the 10-level flash ADC .. 113

Figure 25: Divider architecture... 113

Figure 26: Divide-by-2/3 cell implementation ... 114

Figure 27: Representative divider time diagram for the case of a divider modulus
equal to 128 ... 114

Figure 28: Functional diagram of the general quantization noise cancelling algorithm
implementation .. 114

Figure 29: Effect of quantization noise cancellation on the synthesizer output phase
noise... 115

Figure 30: Measured effect of the quantization noise cancelling algorithm............. 116

Figure 31: Digital loop controller functional diagram.. 116

Figure 32: Adder-free implementation of a) non-segmenting and b) segmenting
switching blocks and c) the switching sequence generator 117

Figure 33: Implementation of a) non-segmenting switching block in the local DEM
encoder and b) the local DEM encoder ... 118

Figure 34: The adder-free modified DEM encoder for an adder-free MRQ-DEM
encoder implementation .. 119

Figure 35: Functional diagram of the dithered second-order digital ΔΣ modulator with
period distortion compensation ... 119

Figure 36: Signal processing diagram of the MRQ-DEM ΔΣ modulator as
implemented in the synthesizer prototype ... 120

Figure 37: Digitally controlled oscillator – coarse tuning bank 120

Figure 38: Digitally controlled oscillator – intermediate tuning bank...................... 121

Figure 39: Digitally controlled oscillator – fine tuning bank 122

Figure 40: Packaged die photograph of the synthesizer prototype 123

x

Figure 41: Representative phase noise plot of the synthesizer prototype for a 40 kHz
bandwidth .. 124

Figure 42: Best spurious tone performance achieved by the prototype.................... 125

xi

LIST OF TABLES

Table 1: Parameters and evaluation settings of the example FDC-PLL design.......... 37

Table 2: Parameters and evaluation settings of the prototype FDC-PLL 126

Table 3: Measured phase noise performance of the synthesizer prototype 127

Table 4: Measured spurious tone performance of the synthesizer prototype............ 127

xii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Ian Galton, for his constant sup-

port and encouragement through the course of the past several years. His passion, en-

thusiasm, mastery and commitment to this field were fundamental to my choice of

starting my research endeavors. His guidance, daily advice and faith in this work

made him a mentor and friend.

I want to thank Kevin Wang for his technical and personal advice, the very

many hours he dedicated to mentor me and his constant encouragement.

I would like to thank all my lab colleagues and friends for their friendship and

support. They were my companions in many technical conversations and enjoyable

moments of distraction.

Finally, I would like thank Greg Harrison and Ginger Weavil for their CAD

support.

Chapter 1, in full, has been published in the IEEE Transactions on Circuits

and Systems I: Regular Papers, volume 60, number 5, pages 1274-1285, May 2013.

The dissertation author is the primary investigator and author of this paper. Professor

Ian Galton supervised the research which forms the basis for this paper.

Chapter 2, in full, has been submitted for review to the IEEE Transactions on

Circuits and Systems I: Regular Papers. The dissertation author is the primary inves-

tigator and author of this paper. Professor Ian Galton supervised the research which

forms the basis for this paper.

xiii

VITA

2013 Doctor of Philosophy in Electrical Engineering (Electronic Circuits

and Systems), University of California, San Diego

2007 Laurea specialistica degree in Electrical Engineering, University of

Padova, Italy

2006 – 2007 EAP Exchange Student, University of California, San Diego

2005 Laurea degree in Information Engineering, University of Padova, Italy

xiv

ABSTRACT OF THE DISSERTATION

Delta-Sigma FDC Based Fractional-N PLLs

with

Multi-Rate Quantizing Dynamic Element Matching

by

Christian Venerus

Doctor of Philosophy in Electrical Engineering (Electronic Circuits and Systems)

University of California, San Diego, 2013

Professor Ian A. Galton, Chair

Fractional-N phase-locked loop (PLL) frequency synthesizers are ubiquitous

in modern communication systems, where they are used to synthesize a signal of high

spectral purity from a reference signal of much lower frequency. In order to meet the

requirements of wireless communication standard, strict limitation are placed on the

xv

spectral content of the synthesized signal.

In recent years, PLL based on time-to-digital converters (TDC-PLLs) have

been proposed that aim at moving the complexity of the design from the analog sec-

tion to the digital section of the synthesizer: the advantages are a reduction in area,

cost and power consumption over competing architectures based on delta-sigma

modulation and charge pumps (ΔΣ-PLLs). Although TDC-PLLs with good perform-

ance have been demonstrated, TDC quantization noise has so far kept their phase

noise and spurious tone performance below that of the best comparable ΔΣ-PLLs. An

alternative approach is to use a delta-sigma frequency-to-digital converter (ΔΣ FDC)

in place of a TDC to retain the benefits of TDC-PLLs and ΔΣ-PLLs.

Chapter 1 describes a practical ΔΣ FDC based PLL in which the quantization

noise is equivalent to that of a ΔΣ-PLL. It presents a linearized model of the PLL, de-

sign criteria to avoid spurious tones in the ΔΣ FDC quantization noise, and a design

methodology for choosing the loop parameters in terms of standard PLL target speci-

fications.

Chapter 2 presents a multi-rate quantizing dynamic element matching (DEM)

encoder for digital to analog converters (DACs) that allows a significant reduction in

the encoder power consumption with respect to a conventional encoder for oversam-

pling DEM DACs, at the expense of a minimal signal-to-noise ratio reduction.

In Chapter 3, the implementation details of a ΔΣ FDC based fractional-N

phase-locked loop prototype are shown. The PLL was built to showcase the capability

of the architecture analyzed in Chapter 1 to comply with the most stringent wireless

xvi

communication standards. The prototype extends the architecture described in Chap-

ter 1 by including an FDC quantization noise cancelling algorithm, and an hardware

efficient implementation of a multi-rate quantizing DEM encoder for digital to fre-

quency conversion.

1

Chapter 1

Delta-Sigma FDC Based Fractional-N PLLs

Abstract—Fractional-N phase-locked loop frequency synthesizers based on time-to-

digital converters (TDC-PLLs) have been proposed to reduce the area and linearity

requirements of conventional PLLs based on delta-sigma modulation and charge

pumps (ΔΣ-PLLs). Although TDC-PLLs with good performance have been demon-

strated, TDC quantization noise has so far kept their phase noise and spurious tone

performance below that of the best comparable ΔΣ-PLLs. An alternative approach is

to use a delta-sigma frequency-to-digital converter (ΔΣ FDC) in place of a TDC to

retain the benefits of TDC-PLLs and ΔΣ-PLLs. This paper proposes a practical ΔΣ

FDC based PLL in which the quantization noise is equivalent to that of a ΔΣ-PLL. It

presents a linearized model of the PLL, design criteria to avoid spurious tones in the

ΔΣ FDC quantization noise, and a design methodology for choosing the loop parame-

ters in terms of standard PLL target specifications.

I. INTRODUCTION

Delta-sigma modulator based fractional-N phase-locked loops (ΔΣ-PLLs) of

Manuscript received February 24, 2012; revised August 01, 2012; accepted August 24, 2012. Date of
publication November 16, 2012. date of current version April 24, 2013. This work was supported by
the National Science Foundation under Award 0914748. This paper was recommended by Associate
Editor J. Kim.
The authors are with the Department of Electrical and Computer Engineering, University of California
at San Diego, La Jolla, CA 92093 USA (e-mail:galton@ucsd.edu).
Color versions of one or more of the figures in this paper are available online at
http://ieeexplore.ieee.org
Digital Object Identifier 10.1109/TCSI.2012.2221197

2

the type shown in Figure 1 are widely used as local oscillator frequency synthesizers

in wireless communication systems because they offer excellent spectral purity with

virtually unlimited frequency tuning resolution [1-4]. Unfortunately, to achieve the

performance necessary for most wireless applications a ΔΣ-PLL requires a highly-

linear charge pump and large loop filter capacitance, often on the order of hundreds of

pico-Farads. Typically, this necessitates an off-chip loop filter, which increases the

pin count, circuit footprint, and overall system cost. Furthermore, in highly-scaled

CMOS technology, low voltage headroom on the input node of the voltage controlled

oscillator (VCO) necessitates tradeoffs that limit performance. Reducing the voltage

swing requires an increase in the VCO gain which tends to increase the phase noise,

yet increasing the voltage swing for a given supply voltage reduces charge pump line-

arity which increases spurious tones.

Recently, fractional-N PLLs have been proposed that exploit digital signal

processing to avoid these problems [5, 6, 7, 8, 9, -10]. They use a time-to-digital con-

verter (TDC), a digital loop filter, and a digitally controlled oscillator (DCO) in place

of a divider, phase-frequency detector (PFD), charge pump, analog loop filter, and

VCO. The TDC generates a quantized estimate of the instantaneous phase of the

DCO at each positive edge of the reference oscillator. The difference between the

TDC output and the calculated instantaneous phase of an ideal oscillator running at

the desired output frequency is digitally lowpass filtered and the resulting digital se-

quence controls the DCO.

Although such TDC-based PLLs (TDC-PLLs) have been demonstrated to

3

have very good performance, TDC quantization noise has so far kept their phase

noise and spurious tone performance below those of the best comparable ΔΣ-PLLs.

TDC quantization noise is relatively coarse and, unlike quantization noise in ΔΣ-

PLLs, it is not highpass shaped so it is not as well suppressed by the PLL.

An alternative approach that offers the advantages of both ΔΣ-PLLs and TDC-

PLLs is to use a delta-sigma frequency-to-digital converter (ΔΣ FDC) in place of a

TDC [11, 12, 13, -14]. Such ΔΣ FDC based fractional-N PLLs (FDC-PLLs) have

been proposed in which the ΔΣ FDC performs 1-bit quantization and the DCO is im-

plemented as a DAC followed by a VCO [15, 16]. It is likely that improved perform-

ance can be achieved in future FDC-PLLs by using the type of high-performance

DCOs developed for TDC-PLLs and, as quantified in this paper, by avoiding 1-bit

quantization in the ΔΣ FDC.

This paper proposes a practical FDC-PLL architecture and proves that its

quantization noise performance is equivalent to that of a ΔΣ-PLL with a second-order

delta-sigma modulator. It shows that 5-level quantization in the ΔΣ FDC is both nec-

essary and sufficient to avoid spurious tones that would otherwise be caused by quan-

tizer overloading. It derives a linearized model that accurately predicts the transfer

functions imposed by the FDC-PLL on its component noise sources, and provides a

design methodology based on the model for choosing the loop parameters in terms of

standard PLL target specifications.

4

II. BACKGROUND INFORMATION

A. Phase Noise in Fractional-N PLLs

The instantaneous frequency of the reference oscillator in Hz is

 ()ref reff tψ+ (1)

where fref is the nominal reference frequency, and ψref(t) is the reference oscillator’s

instantaneous frequency error. The reference oscillator’s instantaneous phase in cy-

cles relative to an initial time, t0, is the integral of (1) from time t0 to time t:

 ()0() ()ref ref refp t t t f tθ= − + (2)

where

0

() ()
t

ref reft
t u duθ ψ= ∫ (3)

is the reference oscillator’s instantaneous phase noise in cycles.

A fractional-N PLL generates a periodic output signal with an average fre-

quency of (N+α)fref, where N is an integer and α is a fractional value with a magnitude

less than 1. Therefore, its instantaneous output frequency in Hz can be written as

 ()() ()PLL ref PLLf t N f tα ψ= + + (4)

where ψPLL(t) is its instantaneous frequency error. The PLL’s instantaneous output

phase in cycles relative to time t0 is the integral of (4) from time t0 to time t:

 ()()0() ()PLL ref PLLp t t t N f tα θ= − + + (5)

where

0

() ()
t

PLL PLLt
t u duθ ψ= ∫ (6)

5

is the PLL’s instantaneous phase noise in cycles.

A fractional-N PLL must control its output frequency such that ψPLL(t) has

zero mean and the power spectral density (PSD) of θPLL(t) is within acceptable limits

for the desired application. As described below, the ΔΣ-PLL and the FDC-PLL each

do this by estimating a phase error sequence proportional to

 ()() ()PLL reft N tθ α θ− + + (7)

sampled at the reference frequency, passing the estimated phase error sequence

through their loop filter, and using the output of the loop filter to control the output

frequency of their VCO or DCO. The feedback ensures that ψPLL(t) has zero mean

(provided that ψref(t) has zero mean), and the characteristics of the loop filter, the DC

loop gain, and the accuracy with which (7) is estimated determine the spectral proper-

ties of θPLL(t).

B. ΔΣ Fractional-N PLLs

A typical ΔΣ-PLL is shown in Figure 1. It consists of a PFD, a charge pump,

an analog loop filter, a VCO, a frequency divider, and a second-order digital delta-

sigma modulator clocked by the divider output.

The divider output is a two-level signal in which the nth and (n+1)th rising

edges are separated by N + y[n] VCO periods, where y[n] is an integer-valued se-

quence from the delta-sigma modulator. As indicated in the figure for the case where

the PLL is locked, if the nth rising edge of the reference signal, vref(t), occurs before

that of the divider output, vdiv(t), the charge pump generates a current pulse of nomi-

6

nal amplitude ICP and duration equal to the time difference between the two edges.

Otherwise, the pulse has the same magnitude and duration, but its polarity is reversed.

The input to the delta-sigma modulator is α plus pseudo-random least signifi-

cant bit dither, d[n], so its output has the form y[n] = α + d[n] + eΔΣ[n], where eΔΣ[n]

is second-order highpass shaped delta-sigma quantization noise. As proven in [17],

the dither prevents eΔΣ[n] from containing spurious tones that would otherwise show

up as spurious tones in the ΔΣ-PLL’s output.

As shown in [18], the net charge delivered to the loop filter by the charge

pump’s current pulse each reference period is proportional to the sum of a phase error

term and first-order highpass shaped delta-sigma quantization noise. The phase error

term is

 ()() ()PLL n ref nN tθ τ α θ− + + (8)

where tn and τn, are the times of the positive-going zero-crossings of vref(t) and vdiv(t),

respectively, corresponding to the nth charge pump pulse.

The loop bandwidth of the ΔΣ-PLL is designed to be low enough that the

delta-sigma quantization noise is largely suppressed by the lowpass filtering operation

of the loop. Hence, the average output frequency settles to (N + α)fref, as desired, with

the delta-sigma quantization noise contributing only a small amount of phase noise.

7

III. OVERVIEW OF THE FDC-PLL

A. System Description

The proposed FDC-PLL is shown in Figure 2. It consists of three main com-

ponents: a ΔΣ FDC, a digital loop controller, and a DCO. The digital loop controller is

clocked and the output of the digital loop controller is latched into the DCO on each

rising edge of the reference signal.

The ΔΣ FDC consists of a PFD, charge pump, integrating capacitor, 5-level

ADC, 2 − z−1 digital block, and multi-modulus divider. The PFD and charge pump are

the same as those in a ΔΣ-PLL. As in a ΔΣ-PLL, when the FDC-PLL is locked the

magnitude of the difference between the time of each rising edge of vdiv(t) and the

time of the corresponding rising edge vref(t) is a small fraction of the reference oscilla-

tor period, Tref. Therefore, the charge pump generates a relatively narrow (compared

to Tref) positive or negative pulse of current around the time of each rising edge of

vref(t). The 5-level ADC is clocked with a delayed version of the reset signal within

the PFD, such that it samples the capacitor voltage shortly after each charge pump

current pulse settles to zero. The divider in the FDC-PLL is identical to that in a ΔΣ-

PLL, but its modulus is varied by v[n] = 2y[n] − y[n − 1] instead of y[n].

By design, α is restricted to the range

 1 1
2 2

α− ≤ ≤ (9)

and the charge pump current, ICP, ideally satisfies

 ()CP refI N f Cα= + Δ (10)

8

where ∆ is the step-size of the 5-level ADC.†

As shown in the Appendix, the ΔΣ FDC implicitly implements second-order

delta-sigma modulation. In particular, y[n] + α is a measure of the PLL’s frequency

error plus second-order highpass shaped ADC quantization noise, so it averages to

zero when the average DCO frequency is (N+α)fref.

The accumulator in the digital loop controller converts the PLL’s frequency

error to phase error and reduces the second-order highpass shaped ADC quantization

noise to first-order highpass shaped ADC quantization noise. Specifically, as shown

in Section IV the output of the accumulator, p[n], consists of the phase error term

given by (8) plus first-order highpass shaped ADC quantization noise. Therefore, the

properties of p[n] are very similar to those of the sequence of charge pulses delivered

by the charge pump to the analog loop filter in the ΔΣ-PLL of Figure 1. Accordingly,

the digital loop filter in the FDC-PLL performs the same function as the analog loop

filter in the ΔΣ-PLL. It suppresses out-of-band quantization noise and circuit error,

and sets the loop dynamics.

The DCO is an analog oscillator with a means for the frequency to be con-

trolled by a digital sequence, in this case the output of the digital loop filter, d[n]. De-

pending on the transfer function of the digital loop filter, the required DCO frequency

change corresponding to the minimum step-size of d[n] can be very small. A common

method of implementing a DCO with a very small minimum frequency step is to

† As demonstrated in Section IV, deviations of the charge pump current sources on the order of several
percent do not significantly degrade the performance of the FDC-PLL. Therefore, since α typically has
a magnitude much smaller than N, usually it is reasonable to set ICP = NfrefC∆.

9

quantize d[n] with a digital delta-sigma modulator clocked at a rate much higher than

the reference frequency, where the clock signal is obtained by dividing the PLL out-

put signal by a small integer [19]. For each value of d[n], the delta-sigma modulator

generates multiple output values with a minimum step-size greater than that of d[n]

which are used to modulate the frequency of the DCO. The natural lowpass filtering

imposed by the DCO suppresses much of the quantization noise introduced by the

delta-sigma modulator, so the effective minimum frequency step of the DCO is that of

d[n] at the cost of additive phase noise.

In this paper, any quantization of d[n] performed by the DCO as described

above is considered to happen within the DCO, so it is not shown explicitly in Figure

2. Accordingly, the DCO phase noise is defined to be the sum of the phase noise

caused by analog oscillator noise and any phase noise caused by quantizing d[n]

within the DCO.

B. Digital Loop Filter

Given that the digital loop filter in the FDC-PLL plays the role of the analog

loop filter in the ΔΣ-PLL, it is reasonable to design the digital loop filter such that it

has comparable filtering characteristics to the analog loop filter shown in Figure 1.

This can be achieved with a digital loop filter transfer function of

 () () ()PI LPFL z L z L z= (11)

where

 1

1()
1PI P IL z K K

z−= +
−

, (12)

10

KP and KI are constants called the proportional path gain and integral path gain, re-

spectively, and LLPF(z) is an all-pole lowpass filter section described shortly [20]. The

LPI(z) portion of the filter is often called a proportional-integral filter and is sufficient

to obtain a stable feedback system. The LLPF(z) portion of the filter provides attenua-

tion above the PLL bandwidth to reduce phase noise.

Such a digital loop filter has comparable filtering characteristics to the analog

loop filter shown in Figure 1 if LLPF(z) contains a single pole. Unfortunately, neither

filter rolls off very sharply with frequency.

In the ΔΣ-PLL this problem is often addressed by adding an extra pole outside

the PLL bandwidth. Usually, no more than one extra pole is added, though, because

of the increased area and power consumption associated with adding multiple extra

poles.

In contrast, the incremental area and power consumption associated with add-

ing multiple extra poles to a digital filter tend to be modest. Therefore, the loop filter

used in the FDC-PLL analyzed in this paper has a transfer function given by (11) with

()

3

1
0

()
1 1

i
LPF

i i

L z
z

λ
λ −

=

=
− −∏ (13)

where 1 − λi for i = 0, 1, 2, and 3 are real poles. A design procedure for selecting KP,

KI, and λi for i = 0, 1, 2, and 3 in terms of the desired loop bandwidth and phase mar-

gin is presented in Section IV.

C. ΔΣ-PLL and FDC-PLL Capacitance Comparison

It is mentioned in the Introduction that the capacitance in the loop filter of the

11

ΔΣ-PLL tends to be large, often on the order of hundreds of pico-Farads. To suffi-

ciently suppress the delta-sigma quantization error, the loop bandwidth of a frac-

tional-N PLL is usually a small fraction (e.g., several hundredths) of the reference

frequency. With the analog loop filter shown in Figure 1, the loop bandwidth is pro-

portional to RICP, and the total capacitance is approximately inversely proportional to

R. Therefore, for any given loop bandwidth, C1 and C2 can be reduced by simultane-

ously increasing R and decreasing ICP. Unfortunately, decreasing ICP tends to increase

the PLL’s phase noise because the loop gain of the ΔΣ-PLL’s linearized model is pro-

portional to ICP [18]. This places a lower bound on ICP for any given application,

which, in turn, typically dictates a large total capacitance when the loop bandwidth is

small.

In contrast, as shown in Section IV the loop bandwidth of the FDC-PLL is in-

dependent of ICP and C, and the overall phase noise is not a strong function of either

ICP or C, so C can be much smaller than the loop filter capacitance in a comparable

ΔΣ-PLL. For example, C = 1.25 pF in the FDC-PLL design example presented in

Section IV.

IV. THE FDC-PLL LINEARIZED MODEL

A. Model Derivation

It is proven in the Appendix that the ΔΣ FDC behaves as the second-order

delta-sigma modulator shown in Figure 3 along with the α adder and accumulator of

the digital loop controller. It is further shown that the output of the accumulator can

12

be written as

 () () () 1

[]
[] []p

PLL n ref n

e n
p n N t e nθ τ α θ ΔΣ= − + + + +

Δ
 (14)

neglecting a possible constant offset, where ep[n] represents the combined error from

noise and other non-ideal circuit behavior in the charge pump, PFD, and divider,

 1[] [] [1]ADC ADCe n e n e nΔΣ = − − , (15)

and eADC[n] is the sum of quantization noise and any additional error from non-ideal

circuit behavior in the ADC. As explained in the Appendix, a five-level ADC is nec-

essary and sufficient to ensure that the delta-sigma modulator does not overload when

the PLL is locked, which would introduce spurious tones.

The output of the loop filter, d[n], is latched into the DCO on each positive-

going zero-crossing of vref(t), so d[n−1] is applied to the DCO during the time interval

tn < t ≤ tn+1 for each positive integer n. It is assumed that the DCO’s control word la-

tency is negligible, so its instantaneous frequency during each time interval tn < t ≤

tn+1 is

 () [1] ()PLL c DCO DCOf t f K d n tψ= + − + (16)

where fc is the nominal center frequency of the DCO in Hz, KDCO is the DCO gain in

Hz, and ψDCO(t) is the DCO’s instantaneous frequency error.† It follows from (4) and

(16) that during the time interval tn < t ≤ tn+1 the FDC-PLL’s instantaneous frequency

error can be written as

 ()() [1] ()PLL c ref DCO DCOt f N f K d n tψ α ψ= − + + − + (17)

† The DCO Gain is defined as the amount by which the DCO frequency changes when d[n] changes by
unity.

13

The ideal output frequency when the FDC-PLL is locked is (N + α)fref, so d[n]

can be written as

 ()1[] []ref c
DCO

d n N f f f n
K

α⎡ ⎤= + − +⎣ ⎦ (18)

where f[n] is the zero-mean component of d[n]. It follows from (17) and (18) that

 () [1] ()PLL DCO DCOt K f n tψ ψ= − + (19)

during the time interval tn < t ≤ tn+1 for each positive integer n.

Integrating (19) from time t0 to t where tn < t ≤ tn+1 gives

() ()

() ()

1

1
1

[1]

[1]

n

PLL DCO k k
k

DCO n DCO

t K t t f k

K f n t t t

θ

θ

−

+
=

= − −

+ − − +

∑ (20)

where

0

() ()
t

DCO DCOt
t u duθ ψ= ∫ (21)

is the instantaneous phase noise introduced by the DCO. Typical reference oscillators

have high spectral purity, so

 1k k reft t T+ − ≅ (22)

holds to a high degree of accuracy. Hence, (20) implies that θPLL(t) can be written as

()

() ()

1

1
[1]

[1]

n

PLL DCO ref
k

DCO n DCO

t K T f k

K f n t t t

θ

θ

−

=

= −

+ − − +

∑ (23)

for tn < t ≤ tn+1 which can be rewritten as

14

() ()

() ()[1] [] []

PLL DCO

n
loop loop loop

ref

t t

t t
n n n

T

θ θ

θ θ θ

=

−
+ + − +

 (24)

where

1

1
[] [1]

n

loop DCO ref
k

n K T f kθ
−

=

= −∑ . (25)

The second and third term in (24) represent a linear interpolation between the

nth and (n+1)th samples of θloop[n]. This type of interpolation is called first-order

hold interpolation [21]. To extend (24) to hold for any t > t0, the first-order hold com-

ponent can be written as a sequence of triangular time pulses with amplitudes θloop[n],

i.e.,

 () () ()0
0

[]PLL DCO loop tri ref
n

t t n h t nT tθ θ θ
∞

=

= + − −∑ (26)

for arbitrary t > t0, where

1 if ,

()
0 otherwise.

ref
reftri

t
t T

Th t
⎧

− <⎪= ⎨
⎪
⎩

 (27)

The bandwidth of a practical PLL is much smaller than the reciprocal of the

maximum magnitude of the difference between τn and tn , so

 () ()PLL n PLL ntθ τ θ≅ (28)

holds to a high degree of accuracy. Hence (24) yields

 () () []PLL n DCO n loopt nθ τ θ θ≅ + . (29)

Combining (14), (15), (25), (26), and (29) results in the linearized model

15

shown in Figure 4 where the sample-rate of the discrete-time blocks and the first-

order hold interpolator is fref. The discrete-time portion of the model implements the

FDC-PLL’s feedback system and generates θloop[n], which is linearly interpolated by

the first-order hold block as described above.

It follows from Figure 4 that the discrete-time loop gain of the FDC-PLL is

2

1() ()
1DCO ref

zT z K T L z
z

−

−=
−

 (30)

and the various FDC-PLL discrete-time transfer functions are

 () () ()
1 ()

loop

ref

T zz N
T z

θ
α

θ
= +

+
 (31)

 () ()
1 ()

loop

DCO

T zz
T z

θ
θ

= −
+

 (32)

 () ()1 ()1
1 ()

loop

ADC

T zz z
e T z
θ −= −

+
 (33)

and

 () 1 ()
1 ()

loop

p

T zz
e T z

θ ⎛ ⎞
= ⎜ ⎟Δ +⎝ ⎠

. (34)

These equations describe the loop dynamics of the FDC-PLL.

B. Phase Noise PSD Calculation

It is assumed that the noise signals θref(tn), eADC[n], ep[n], and θDCO(t) can be

modeled as uncorrelated, zero-mean, wide-sense stationary random processes, so the

PSD of θPLL(t) is the sum of PSD components that each correspond to one of the noise

signals. Likewise, the discrete-time PSD of θloop[n] is the sum of the discrete-time

16

PSD components that each correspond to one of the noise signals.

It follows from (31) that the component of the discrete-time PSD of θloop[n]

corresponding to θref(tn) is

 () ()
()

()

22
2

21

ref

ref

ref ref

j T f
j T f

j T f

T e
S e N

T e

π

π
θ π

α+
+

 (35)

where ()2 ref

ref

j T fS e π
θ is the discrete-time PSD of θref(tn). The continuous-time Fourier

transform of the output of a first-order hold interpolator with input u[n] and sample-

rate fref is

 () () 2

2 sin
ref refj T f

ref
ref

T f
U e T

T f
π π

π

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (36)

where ()2 refj T fU e π is the discrete-time Fourier transform of u[n] [21]. Therefore, the

component of the PSD of θPLL(t) corresponding to θref(tn) is

 () () ()
()

()
2 42

2

2

sin

1

ref

ref

ref ref

j T f
refj T f

ref j T f
ref

N T e T f
S e T

T fT e

π

π
θ π

α π
π

⎡ ⎤+
⎢ ⎥

+ ⎢ ⎥⎣ ⎦
 .(37)

By similar reasoning, the component of the PSD of θPLL(t) corresponding to

ep[n] is

 () ()
()

()
2 42

2
2 2

sin

1

ref

ref

p ref

j T f
refj T f ref

e j T f
ref

T e T fT
S e

T fT e

π

π

π

π
π

⎡ ⎤
⎢ ⎥

Δ + ⎢ ⎥⎣ ⎦
 (38)

where ()2 ref

p

j T f
eS e π is the discrete-time PSD of ep[n].

As described in the Appendix, eADC[n] is asymptotically white and uniformly

17

distributed between −0.5 and 0.5, so the discrete-time PSD of eADC[n] is 1/12. It fol-

lows from reasoning similar to that which led to (37) and (38) that the component of

the PSD of θPLL(t) corresponding to eADC[n] is

 () ()
()

()
2 42

2
2

sin
sin

3 1

ref

ref

j T f
refref

ref j T f
ref

T e T fT
T f

T fT e

π

π

π
π

π

⎡ ⎤
⎢ ⎥

+ ⎢ ⎥⎣ ⎦
 (39)

in units of cycles squared per Hz. If the desired units of the PSD are radians squared

per Hz, then (39) must be scaled by 4π2.

The component of the PSD of θPLL(t) corresponding to DCO phase noise de-

pends on both θDCO(t) and θDCO(tn), which are obviously correlated. Consequently, the

effects of θDCO(t) and θDCO(tn) must be considered together when calculating the com-

ponent of the PSD of θPLL(t) corresponding to DCO noise.

The component of θloop[n] corresponding to DCO noise is θDCO(tn) filtered by

the discrete-time lowpass transfer function (32). As implied by (36), the first-order

hold interpolator imposes a continuous-time lowpass filtering operation on this signal

component that rolls off in frequency at 40 dB per decade. As shown in Figure 4,

θDCO(t) is added to the output of the first-order hold interpolator and for a typical

DCO the PSD of θDCO(t) rolls off in frequency by no more than 20 dB per decade

(except at low frequencies where 1/f noise is significant). Therefore, in calculating the

component of the PSD of θPLL(t) corresponding to DCO noise, the output of the first-

order hold interpolator can be neglected for frequencies above fref/2 with a high de-

gree of accuracy.

It follows that the effect of adding θDCO(tn) in the feedback loop of Figure 4 is

18

practically equivalent to adding θDCO(t) filtered by

()

()
() 22

2

sin

1

ref

ref

j T f
ref

j T f
ref

T e T f
T fT e

π

π

π
π

⎡ ⎤
− ⎢ ⎥

+ ⎢ ⎥⎣ ⎦
 (40)

to the output of the first-order hold interpolator. This result relies on the reasonable

assumption that aliasing error in θDCO(tn) within the passband of (32) is negligible. It

follows that the component of the PSD of θPLL(t) corresponding to DCO noise is

 ()
()

()
()

222

2

sin
1

1

ref

DCO ref

j T f
ref

j T f
ref

T e T f
S f

T fT e

π

θ π

π

π

⎡ ⎤
− ⎢ ⎥

+ ⎢ ⎥⎣ ⎦
 (41)

where ()
DCO

S fθ is the continuous-time PSD of θDCO(t).

The PSD of θPLL(t) from all of the FDC-PLL noise sources is the sum of (37),

(38), (39), and (41). Typically, estimates of ()2 ref

ref

j T fS e π
θ , ()2 ref

p

j T f
eS e π , and

()
DCO

S fθ are obtained via circuit simulation. As described in Section II, the DCO

phase noise is the combination of phase noise introduced by the underlying analog

oscillator and any quantization of d[n], so circuit simulations used to estimate the

DCO phase noise PSD must include any such quantization noise.

C. Loop Filter Design

The loop filter transfer function, L(z), determines the FDC-PLL’s loop band-

width, phase margin, and noise filtering characteristics. In analogy to a conventional

ΔΣ-PLL, the FDC-PLL’s phase noise consists of highpass filtered DCO noise, i.e.,

(41), and lowpass filtered noise from the reference oscillator, ADC, divider, PFD, and

19

charge pump, i.e., (37)-(39). The design objective for L(z) is to strike a compromise

among these noise filtering operations appropriate to the application’s requirements

while maintaining a given desired loop bandwidth and phase margin.

In a ΔΣ-PLL, having a zero-frequency pole in the loop filter ensures the

charge pump output current pulse sequence has zero mean, which simplifies the de-

sign of both the charge pump and PFD [4]. In contrast, the delta-sigma modulator re-

lationship derived in the Appendix implies that in the FDC-PLL the charge pump out-

put current pulse sequence has zero mean regardless of whether the loop filter has a

zero-frequency pole. Therefore, a major reason for having a zero-frequency loop filter

pole in ΔΣ-PLLs does not apply to the FDC-PLL.

Nevertheless, there are still advantages to having a zero-frequency pole in an

FDC-PLL’s loop filter. One advantage is that it causes the transfer function portion of

(41) to have a second zero-frequency zero. DCO phase noise typically has a PSD

proportional to 1/f 3 for 0 < f < fc where fc is the frequency below which 1/f noise is

significant. Having two zero-frequency zeros in the transfer function portion of (41)

prevents the portion of the PSD proportional to 1/f 3 from contributing significantly to

the overall FDC-PLL phase noise. Another advantage is that the zero-frequency pole

eliminates the dependence of θPLL(t) on the DCO’s center frequency and gain, which

both vary with process, supply voltage, and temperature.

The primary disadvantage of having a zero-frequency pole in the loop filter is

that it introduces negative phase into the loop gain which limits the achievable sharp-

ness of the filter’s transition band for a given phase margin. Therefore, in some appli-

20

cations not having a zero-frequency pole in the loop filter may offer an advantage

with respect to minimizing phase noise.

Unlike the case of an analog PLL, there is a great deal of flexibility in the

choice of L(z), regardless of whether it has a zero-frequency pole. The remainder of

this section evaluates the practical choice of L(z) given by (11) with (12) and (13),

which includes a zero-frequency pole.

A reasonable design procedure is to first choose values of KP and KI via the

equations derived below that result in the desired loop bandwidth and phase margin to

the extent that

 () 22 1 and 2 1ref uj T f
LPF ref uL e T fπ π≅ (42)

where fu is the unity-gain frequency of the FDC-PLL’s loop gain. This requires that

the poles of LLPF(z) be initially chosen such that

 2 1ref u iT fπ λ < . (43)

Then a trial and error procedure can be used in which the λi values are reduced

to improve noise suppression while the KP and KI values are adjusted to maintain the

desired loop bandwidth and phase margin.

By definition, the unity gain frequency of the FDC-PLL’s loop gain, fu, satis-

fies

 () 22 1ref uj T fT e π = . (44)

It can be verified from (12), (30), and (42) that

21

()

2

2 2

41 1
2 2
DCO I

u

DCO ref

K KKf
K T Kπ

≅ + + (45)

where

 ()P P IK K K K+ . (46)

Typically, KP KI in which case (45) reduces to

2

DCO P
u

K Kf
π

≅ (47)

Furthermore,

()

()
()

2 42

2

sin 1
21

ref u

ref u

j T f
ref u

j T f
ref u

T e T f
T fT e

π

π

π
π

⎡ ⎤
≅⎢ ⎥

+ ⎢ ⎥⎣ ⎦
 (48)

given 2 1ref uT fπ , so the FDC-PLL’s loop bandwidth, fBW, is approximately given

by

 BW uf f≅ . (49)

The FDC-PLL’s phase margin in radians is

 ()2 ref uj T fPM T e ππ= + . (50)

With (12), (11), (30), (42), and (45), this can be written as

()
()

()
()

1

1

sin 2
tan

1 cos 2

sin 2
2 tan 4 .

1 cos 2

P ref u

I P ref u

ref u
ref u

ref u

K T f
PM

K K T f

T f
T f

T f

π
π

π

π
π

π

−

−

⎛ ⎞
⎜ ⎟= +
⎜ ⎟⎡ ⎤+ −⎣ ⎦⎝ ⎠

⎛ ⎞
⎜ ⎟− −
⎜ ⎟−⎝ ⎠

 (51)

It follows from the above analysis that for fixed KDCO and Tref the loop band-

22

width depends primarily on KP and for fixed KDCO, Tref, and loop bandwidth the phase

margin depends primarily on KI. Therefore, it is straightforward to choose KI and KP

using (47), (49), and (51) to achieve a desired loop bandwidth and phase margin pro-

vided (42) holds. Then, a trial and error process can be applied in which the λi values

are reduced to improve phase noise suppression and KI and KP are increased to main-

tain the desired loop bandwidth and phase margin. The trial and error process is

guided by plotting (37), (38), (39), and (41) at each iteration.

V. DESIGN EXAMPLE

The design methodology described above has been applied to select the ex-

ample FDC-PLL design parameters presented in Table I. This section applies the lin-

earized model to calculate the example FDC-PLL’s expected performance with realis-

tic input noise levels, and compares the calculated performance to the performance

predicated by computer simulation. The example was chosen because it is suitable for

use as a carrier synthesizer for the widely-used GSM mobile handset standard and

facilitates comparison with previously published TDC-based PLLs [7, 10].

To apply the linearized model to calculate the FDC-PLL’s output phase noise

PSD, i.e., the PSD of θPLL(t), the PSDs of the input noise sources θDCO(t), θref(tn), and

ep[n] must be known or estimated. In this example, the input noise sources are esti-

mated to be in line with what can be achieved in a 65 nm CMOS process with a 1 V

power supply. The simulated DCO is identical to that presented in [19], so θDCO(t),

which includes both DCO quantization noise and analog noise, is taken to have a PSD

23

consistent with the results presented in [19] as shown in Figure 5. The θref(tn) and

ep[n] input noise source levels were estimated via periodic steady-state (PSS) circuit

simulations of transistor-level reference buffer, divider, PFD, and charge pump cir-

cuits.

PSS simulation of the reference buffer indicates that θref(t) can be modeled as

white noise with a PSD level of −150 dBc/Hz. Therefore, the discrete-time PSD level

of θref(tn) is −150 − 10log10(Tref) = −76 dBc.

Simulations indicate that ep[n] is dominated by the charge pump, which has

the form of the single-ended design presented in [22]. The quantization step-size of

the ADC is 80 mV. Its input voltage, and, therefore, the output voltage of the charge

pump, ranges from 0.3 V to 0.7 V. The choices of C and ICP are related via (10), and

for this example design they are 1.25 pF and 359 μA, respectively. Additionally, IOC =

−ICP (IOC is defined in the Appendix) and TOC = 2 ns. PSS simulations of the charge

pump and offset current circuitry indicate that ep[n] can be modeled as white noise

with a discrete-time PSD level of −64 dBV.

All the PSD plots in Figures 6 through 8 were obtained with the input noise

source levels described above. The calculated PSD plots shown in the figures where

obtained via (37), (38), (39), and (41). The simulated PSD plots shown in the figures

where obtained via an event-driven C-language simulator. The simulator calculates

the times of successive events, which include the positive-going zero crossings of

vref(t), vdiv(t), and vout(t), the sample times of the 5-level ADC, and the desired output

sample times of the θPLL(t). Each event time is calculated as a function of the FDC-

24

PLL’s state variables, and the state variables are updated at each event time.

Figure 6 shows the simulated and calculated PSD of θPLL(t) for several cases.†

In one of the cases all of the noise sources presented above are considered together. In

each of the other cases, only one of the noise sources is considered with all the other

noise sources set to zero. Therefore, the figure shows how each noise source contrib-

utes to the total FDC-PLL output phase noise.

Figure 7 shows the simulated and calculated PSD of θPLL(t) for two cases to

demonstrate the effect of the LLPF(z) portion of the FDC-PLL’s loop filter. One case is

that shown in Figure 6 for all the noise sources acting together. The other case differs

only in that the simulation and calculations were made with LLPF(z) effectively dis-

abled by setting its λi coefficients to 1, and KI and KP adjusted to maintain approxi-

mately the same phase margin and bandwidth as the first case.

Figure 8 shows the effect of typical non-ideal circuit behavior. The smooth

curve is the same calculated PSD of θPLL(t) shown in Figure 6 for all the noise sources

acting together. The jagged curve is the corresponding simulated PSD but with sev-

eral non-ideal circuit effects taken into account in addition to noise. The non-ideal

circuit effects involve the charge pump, offset current, sampling capacitor, and 5-level

ADC. The magnitudes of the positive and negative charge pump current sources were

increased and decreased, respectively, by 5%, and the offset current magnitude was

decreased by 5%. A capacitor leakage current of −200 nA per reference period was

introduced. Randomly chosen errors of 10 mV, −5 mV, 6 mV, and −8 mV, respec-

†In each plot, the smooth curves represent the calculated PSDs, and the jagged curves represent simu-
lated PSDs.

25

tively, were introduced into the ADC threshold voltages. The errors were made larger

than would be expected in practice to demonstrate the robustness of the FDC-PLL

architecture.

The simulated and calculated results presented in Figures 6 and 7 demonstrate

that the linearized model accurately predicts the expected phase noise performance of

the example FDC-PLL for the considered evaluation settings. Furthermore, the simu-

lation results presented in Figure 8 suggest that the FDC-PLL is robust with respect to

non-ideal circuit behavior. Numerous additional FDC-PLL design parameters and

evaluation cases considered by the authors have yielded consistently positive results.

VI. APPENDIX

This Appendix proves that the ΔΣ FDC followed by the α adder and accumu-

lator in the digital loop controller perform the signal processing operations shown in

Figure 3. It also applies known delta-sigma modulator results to draw various conclu-

sions about the quantization noise introduced by the 5-level ADC.

The derivation consists of four parts. The first two parts derive expressions for

the positive-going zero-crossing times of the reference oscillator and the divider out-

put, respectively. The third part derives an expression for the voltage across the ca-

pacitor at the output of the charge pump. The fourth part combines the results of the

previous parts to show that the ADC’s quantization noise is that of a second-order

delta-sigma modulator.

26

A. Reference Oscillator Zero-Crossing Time Derivation

Recall that tk, for k = 0, 1, 2, …, are the times of consecutive positive-going

zero-crossings of the reference oscillator signal, vref(t). The phase in cycles of an os-

cillator at each of its positive-going zero crossings is integer-valued, so the definition

of tk implies that the phase of the reference oscillator at time tk is

 ()ref kp t k= (52)

for all non-negative integers k.

Exactly one reference oscillator cycle occurs during the time interval tk−1 < t ≤

tk, so it follows from (2) and (52) that

 1

1 []ref
k k

ref

k
t t

f
ψ

−

−
− = (53)

where

 () ()1[]ref ref k ref kk t tψ θ θ −= − (54)

is the change in the reference oscillator’s instantaneous phase noise in cycles between

times tk−1 and tk.† Summing (53) from k = 1 through any positive integer n yields

 ()0
1

1 1 []
n

n ref
kref

t t k
f

ψ
=

= + −∑ . (55)

B. Divider Output Zero-Crossing Time Derivation

Recall that τk, for each k = 0, 1, 2, …, is the time of the positive-going zero-

† Note that ψref[n] is a different function than ψref(t), but they are related in that ψref[n] is proportional to
the average of ψref(t) over the nth reference period. The functions ψPLL[n] and ψPLL(t) are similarly dis-
tinct.

27

crossing of the FDC-PLL’s output signal, vout(t), that triggers the kth rising edge of the

divider output, vdiv(t). Without loss of generality, assume that τk is indexed such that

 ()0 0PLLp τ = . (56)

The kth output value of the 5-level ADC, y[k], is a digitized sample of the charge

pump capacitor voltage sampled after time τk, but well before time τk+1, and it follows

from Figure 2 that

 [] 2 [] [1]v k y k y k= − − . (57)

Therefore, the kth sample of v[k] is available prior to time τk+1. The divider modulus is

immediately updated when the sample is available such that exactly N−v[k] DCO cy-

cles occur during the time interval τk < t ≤ τk+1. The definition of τk implies that

 () ()1 [1]PLL k PLL kp p N v kτ τ −− = − − . (58)

It follows from (5) and (58) that

()1
[1] []PLL

k k
ref

N v k k
N f

ψτ τ
α−

− − −
− =

+
 (59)

where

 () ()1[]PLL PLL k PLL kkψ θ τ θ τ −= − (60)

is the change in the FDC-PLL’s instantaneous output phase noise in cycles over the

interval τk−1 < t ≤ τk. Summing (59) from k = 1 through any positive integer n yields

() ()0

1

1 [1] []
n

n PLL
kref

N v k k
N f

τ τ ψ
α =

= + − − −
+ ∑ . (61)

28

C. Charge Pump Output Derivation

Subtracting (55) from (61) gives

() ()

0 0

1

1 [] [1]

n n
n

kref

t t

x k v k
N f

τ τ

α =

− = −

+ − −
+ ∑ (62)

where

 ()[] [] []PLL refx k k N kα ψ α ψ= − − + + . (63)

The −α term in x[n] can be interpreted as the phase change in cycles over one refer-

ence period of an ideal oscillator of frequency Nfref minus that of the ideal output of

the FDC-PLL. The definitions of ψref[k] and ψPLL[k] imply that the average value of

x[k]+α is zero when the FDC-PLL is locked, and that (x[k]+α)/Tref is a measure of the

average over the kth reference period of the difference between (N+α) times the in-

stantaneous frequency of the reference oscillator and the instantaneous frequency of

the output signal.

It follows from (5) and (56) that

 ()
()

0
0 0

PLL

ref

t
N f
θ τ

τ
α

− = −
+

. (64)

Substituting (57) and (64) into (62) gives

()() ()

()
1

0

[1] [] [1]

[1] .

n

n n ref
k

PLL

t N f y n x k y k

y

τ α

θ τ
=

− + = − − + − −

+ − −

∑ (65)

Suppose the FDC-PLL is locked for all t ≥ t0 so that

 n n reft Tτ − < (66)

29

for all n ≥ 0, where Tref = 1/fref is the nominal period of the reference oscillator. If the

PFD and charge pump are as shown in Figure 1, then in the absence of non-ideal cir-

cuit behavior the output of the charge pump is a sequence of current pulses given by

when

() when
0 otherwise

CP n n

cp CP n n

I t t
i t I t t

τ
τ

≤ ≤⎧
⎪= − ≤ ≤⎨
⎪
⎩

 (67)

for all positive integers n. An additional current pulse of fixed duration and fixed

(positive or negative) amplitude may also be included in icp(t) each reference period

to reduce nonlinear distortion introduced by the PFD and charge pump [23], [24].

The ADC samples the capacitor voltage each reference period shortly after the

charge pump current sources settle to zero. Let Vc[n] be the voltage sampled by the

ADC during the nth reference period minus the midscale voltage of the ADC (i.e.,

Vc[n] = 0 corresponds to the middle of the ADC’s input range). The operation of the

charge pump implies that

 ()[] [1] []CP OC
c c n n OC p

I IV n V n t T e n
C C

τ= − + − + + (68)

where TOC and IOC are the duration and amplitude, respectively, of the additional cur-

rent pulse if it is used (otherwise IOC = 0), and ep[n] represents the combined error

from noise and other non-ideal circuit behavior in the charge pump, PFD, and divider.

Each sample of ep[n] is the result of error in the amount of charge in the current

pulses integrated onto the capacitor during the nth reference period.

Substituting (10) and (65) into (68) results in

30

()

()

1

0

[] [1] [1] [] [1]

[]
[1]

n
c c

k

p
PLL offset

V n V n y n x k y k

e n
y θ τ θ

=

−
= − − + − −

Δ Δ

+ − − + +
Δ

∑
 (69)

where

 OC
offset OC

IT
C

θ =
Δ

. (70)

D. Delta-Sigma Modulator Equivalence and Implications

The output of the ADC, y[n], can take on values from the set {−2, −1, 0, 1, 2}

and can be written as

 1[] [] []c ADCy n V n e n= +
Δ

 (71)

where eADC[n] is the sum of quantization noise and any additional error from non-

ideal circuit behavior in the ADC. The ADC has only five levels, so its quantization is

very coarse. Therefore, it is assumed that the only non-negligible component of

eADC[n] is quantization noise, so the nth output sample of the ADC is taken to be

Vc[n]/Δ rounded to the nearest integer when

 2.5 [] 2.5cV n− Δ ≤ ≤ Δ , (72)

and −2 or 2, respectively, when Vc[n] is less than −2.5Δ or greater than 2.5Δ.

Equations (69) and (71) are equivalent to the block diagram shown in Figure 3

to the left of the α adder for n = 1, 2, 3, …, where

 2
[][] cV nu n =
Δ

 (73)

and the initial condition on u1[n] is

31

 ()1 0[0] [1] PLL offsetu y θ τ θ= − − + . (74)

The block diagram has the well-known form of a second-order delta-sigma modula-

tor, so its output can be written as

 2

[] [1]
[] [] []p pe n e n

y n x n e nΔΣ

− −
= + +

Δ
 (75)

where

 2[] [] 2 [1] [2]ADC ADC ADCe n e n e n e nΔΣ = − − + − (76)

is second-order highpass shaped quantization noise [25, 26].

If (72) is satisfied for a given integer n, then eADC[n] is the quantization noise

caused by rounding u2[n] to the nearest integer. In this case the delta-sigma modulator

is said to be non-overloading at time n. Otherwise, the delta-sigma modulator is said

to be overloaded at time n. If the delta-sigma modulator is non-overloading for all n =

1, 2, 3, …, then eADC[n] is asymptotically white and uniformly distributed between

−0.5 and 0.5 under the realistic assumption that x[n] contains a small amount of inde-

pendent random noise [27]. In contrast, if the delta-sigma modulator becomes over-

loaded, then eADC[n] becomes correlated with x[n], its variance increases, and it often

contains spurious tones. Hence, for best phase noise performance it is desirable to

keep the delta-sigma modulator non-overloading once the FDC-PLL is locked.

Sufficient conditions for the delta-sigma modulator to be non-overloading for

n = 1, 2, 3, … are that it is non-overloading for n = 1 and n = 2, and

[] [1]

[] 1p pe n e n
x n

− −
+ ≤

Δ
 (77)

32

for n = 3, 4, 5, …. The proof of this result is as follows. It can be verified from Figure

3 that

 2

[] [1]
[] []

2 [1] [2]

p p

ADC ADC

e k e k
u k x k

e k e k

− −
= +

Δ
− − + −

 (78)

If the delta-sigma modulator is non-overloading for n = k − 1 and n = k − 2, then

eADC[k−1] and eADC[k−2] are each bounded in magnitude by 0.5, so (73) and (78) im-

ply that

[] [1]

[] [] 1.5p p
c

e k e k
V k x k

⎛ − − ⎞
≤ + + Δ⎜ ⎟

Δ⎝ ⎠
. (79)

This implies that (72) is satisfied and therefore that the delta-sigma modulator is non-

overloading for n = k provided (77) holds for n = k. The result follows from induction.

It follows from (63) that (77) is satisfied for any α in the range given by (9) if

 ()
[] [1] 1[] []

2
p p

PLL ref

e n e n
n N nψ α ψ

− −
− + + ≤

Δ
. (80)

Frequency synthesizers usually are designed to have low phase noise, so the left side

of (80) is expected to be far less than ½ in practice. Furthermore, in most practical

cases the magnitude of α is much larger than the left side of (80). In such cases it can

be verified that only four of the five ADC levels are exercised once the FDC-PLL is

locked. Thus, the five ADC levels are easily sufficient to ensure that the delta-sigma

modulator remains non-overloading once the FDC-PLL is locked, which also ensures

that eADC[n] does not contain spurious tones induced by quantizer overloading.

Nevertheless, it can be verified from well-known delta-sigma modulator prop-

33

erties, that when the magnitude of α is 0.5, four ADC levels would only be sufficient

to ensure that the delta-sigma modulator remains non-overloading in the absence of

any noise other than quantization noise. Therefore, in practice five ADC levels are

necessary to avoid overloading for values of α with magnitudes close to 0.5.

Substituting (63) into (75) gives

()

2

[] [] []

[] [1]
[].

PLL ref

p p

y n n N n

e n e n
e n

α ψ α ψ

ΔΣ

+ = − + +

− −
+ +

Δ

 (81)

This sequence is accumulated prior to the loop filter, so the input to the loop filter can

be written as (14) neglecting a possible offset that depends on the initial value of the

accumulator output.

ACKNOWLEDGEMENTS

Chapter 1, in full, has been published in the IEEE Transactions on Circuits

and Systems I: Regular Papers, volume 60, number 5, pages 1274-1285, May 2013.

The dissertation author is the primary investigator and author of this paper. Professor

Ian Galton supervised the research which forms the basis for this paper.

34

FIGURES

Figure 1: A delta-sigma modulator based fractional-N PLL (ΔΣ-PLL)

1

1
1 z−−

Figure 2: A delta-sigma FDC based fractional-N PLL (FDC-PLL)

35

1

1
1 z−− 1

1
1 z−− 1

1
1 z−−

Figure 3: The implicit second-order delta-sigma modulator implemented by the ΔΣ
FDC followed by the α adder and accumulator of the digital loop controller

11
DCO refK T

z−−

Figure 4: Phase noise model of the FDC-PLL

Ph
as

e
N

oi
se

 (d
B

c/
H

z)

Frequency Offset (Hz)
10

3
10

4
10

5
10

6
10

7
10

8
10

9-220

-200

-180

-160

-140

-120

-100

-80

-60

Figure 5: PSD of θDCO(t) used in the design and simulation of the FDC-PLL example

36

10
3

10
4

10
5

10
6

10
7

10
8

10
9-220

-200

-180

-160

-140

-120

-100

-80

Total

FDC
Quantization

Charge Pump

Reference

DCO

Ph
as

e
N

oi
se

 (d
B

c/
H

z)

Frequency Offset (Hz)

Figure 6: Calculated PSD plots (smooth curves) and simulated PSD plots (jagged
curves) of the FDC-PLL output phase noise resulting from each of the noise sources
individually and all together

10
3

10
4

10
5

10
6

10
7

10
8

10
9-220

-200

-180

-160

-140

-120

-100

-80
Without LLPF(z)

With LLPF(z)

Ph
as

e
N

oi
se

 (d
B

c/
H

z)

Frequency Offset (Hz)

Figure 7: Calculated and simulated PSD plots of the FDC-PLL output phase noise
with all noise sources with and without the LLPF(z) portion of the loop filter

37

10
3

10
4

10
5

10
6

10
7

10
8

10
9-220

-200

-180

-160

-140

-120

-100

-80

Ph
as

e
N

oi
se

 (d
B

c/
H

z)

Frequency Offset (Hz)

Figure 8: Calculated PSD plot of the FDC-PLL output phase noise with all noise
sources, and the corresponding simulated PSD with several non-ideal circuit effects
taken into account in addition to noise

TABLES

Table 1: Parameters and evaluation settings of the example FDC-PLL design

 Design Parameters and Evaluation Settings Value
fref 26 MHz
fPLL 3588.026 MHz
N 138
α 0.001
KDCO 24 kHz
VDD 1.0 V
Δ 80 mV
ADC Input Range 0.3-0.7 V
C 1.25 pF
ICP 359 μA
IOC −ICP
TOC 2 ns
TDZ 1 ns
KP 2-7fref /KDCO
KI 2-17fref /KDCO
λ0, λ1, λ2, λ3 2-2, 2-2, 2-3, 2-4
Loop-filter Word Width 32 bits
DCO Input Word Width 14 bits
DCO’s ΔΣ Modulator Input Word Width 8 bits
DCO’s ΔΣ Modulator Update Rate fPLL/16

38

REFERENCES

1. B. Miller, B. Conley, “A multiple modulator fractional divider,” Annual IEEE

Symposium on Frequency Control, vol. 44, pp. 559-568, March 1990.

2. B. Miller, B. Conley, “A multiple modulator fractional divider,” IEEE Transac-
tions on Instrumentation and Measurement, vol. 40, no. 3, pp. 578-583, June
1991.

3. T. A. Riley, M. A. Copeland, T. A. Kwasniewski, “Delta-sigma modulation in
fractional-N frequency synthesis,” IEEE Journal of Solid-State Circuits, vol.
28, no. 5, pp. 553-559, May 1993.

4. R. Best, Phase-Locked Loops: Design, Simulation, and Applications. Sixth Edi-
tion, New York, NY: McGraw-Hill, 2007.

5. Kajiwara, M, Nakagawa, “A new PLL frequency synthesizer with high switch-
ing speed”, IEEE Transactions on Vehicular Technology, vol. 41, pp. 407-413,
November 1992.

6. R. B. Staszewski et al., “All-Digital TX Frequency Synthesizer and Discrete-
Time Receiver for Bluetooth Radio in 130-nm CMOS”, IEEE J. Solid-State
Circuits, vol. 39, pp. 2278-2291, December 2004.

7. R. B. Staszewski, et. al., “All-Digital PLL and Transmitter for Mobile Phones,”
IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2469-2482, December,
2005.

8. K. Muhammad, et. al., “The first fully integrated quad-band GSM/GPRS re-
ceiver in a 90-nm digital CMOS process,” IEEE Journal of Solid-State Circuits,
vol. 41, no. 8, pp.1772-1783, August 2006

9. C. Weltin-Wu, E. Temporiti, D. Baldi, F. Svelto, “A 3GHz Fractional-N All-
Digital PLL with Precise Time-to-Digital Converter Calibration and Mismatch
Correction”, IEEE International Solid-State Circuits Conference, pp. 344-345,
February 2008.

10. C. Hsu, M. Z. Straayer, M. H. Perrott, “A Low-Noise, Wide-BW 3.6GHz Digi-
tal ΔΣ Fractional-N Frequency Synthesizer with a Noise-Shaping Time-to-
Digital Converter and Quantization Noise Cancellation”, IEEE International

39

Solid-State Circuits Conference, pp. 340-341, Feb. 2008.

11. I. Galton, G. Zimmerman, “Combined RF phase extraction and digitization,”
IEEE International Symposium on Circuits and Systems, vol. 2, pp.1104-1107,
May 1993.

12. R. D. Beards, M. A. Copeland, “An Oversampling Delta-Sigma Frequency Dis-
criminator,” IEEE Transactions on Circuits and Systems II: Analog and Digital
Processing, vol. 41, no. 1, pp. 26-32, January 1994.

13. I. Galton, “Analog-input digital phase-locked loops for precise frequency and
phase demodulation,” IEEE Transactions on Circuits and Systems II: Analog
and Digital Processing, vol. 42, no. 10, pp. 621-630, November 1995.

14. I. Galton, W. Huff, P. Carbone, E. Siragusa, “A delta-sigma PLL for 14b
50kSample/s frequency-to-digital conversion of a 10 MHz FM signal,” IEEE
Journal of Solid-State Circuits, vol. 33, no. 12, pp. 2042-2053, December 1998.

15. W. T. Bax, T. A. D. Riley, C. Plett, M. A. Copeland, “A Σ-Δ Frequency Dis-
criminator Based Synthesizer,” IEEE International Symposium on Circuits and
Systems, vol. 1, pp. 1-4, May 1995.

16. W. T. Bax, M. A. Copeland, “A GMSK Modulator Using a ΔΣ Frequency Dis-
criminator-Based Synthesizer,” IEEE Journal of Solid-State Circuits, vol. 36,
no. 8, pp. 1218-1227, August 2001.

17. S. Pamarti, J. Welz, I. Galton, “Statistics of the quantization noise in 1-bit dith-
ered single-quantizer digital delta-sigma modulators,” IEEE Transactions on
Circuits and Systems - I: Regular Papers, vol. 54, no. 3. pp. 492-503, March
2007.

18. I. Galton, “Delta-Sigma Fractional-N Phase-Locked Loops” in Phase-Locking
in High-Performance Systems: From Devices to Architectures, Behzad Razavi,
Ed., John Wiley & Sons, 2003.

19. R. B. Staszewski et al., “A First RF Digitally-Controlled Oscillator for Mobile
Phones,” IEEE Radio Frequency integrated Circuits (RFIC) Symposium, pp.
119-122, June 2005.

20. F. Gardner, Phaselock Techniques, Third Edition, John Wiley, Hoboken, 2005.

40

21. J. Proakis, D. Manolakis, Digital Signal Processing, Third Edition, Upper Sad-
dle River, Prentice Hall, 1996.

22. B. Razavi, C. Lam, “A 2.6-GHz/5.2-GHz frequency synthesizer in 0.4-μm
CMOS technology,” Symposium on VLSI Circuits, pp.117-120, 1999.

23. E. Temporiti, G. Albasini, I. Bietti, R. Castello, and M. Colombo, “A 700 kHz
bandwidth SD fractional sythesizer with spurs compensation and linearization
tecniques for WCDMA applications,” IEEE Journal of Solid-State Circuits, vol.
39, no. 9, pp. 1446–1454, Sep. 2004.

24. K. J. Wang, A. Swaminathan, I. Galton, “Spurious Tone Suppression Tech-
niques Applied to a Wide-Bandwidth 2.4 GHz Fractional-N PLL,” IEEE Jour-
nal of Solid-State Circuits, vol. 43, no. 12, pp. 2787 – 2797, December 2008.

25. G. Lainey, R. Saintlaurens, P. Senn, “Switched-capacitor second-order noise-
shaping coder,” Electronics Letters, vol. 19, pp. 149-150, February 1983.

26. R. Schreier, G. C. Temes, Understanding Delta-Sigma Data Converters, John
Wiley and Sons, 2005.

27. I. Galton, “Granular quantization noise in a class of delta-sigma modulators,”
IEEE Transactions on Information Theory, vol. 40, no.3, pp.848-859, May
1994.

41

Chapter 2

Multi-Rate Quantizing Dynamic Element Matching For

Oversampling Digital-to-Analog Conversion

Abstract—Mismatch-shaping dynamic element matching (DEM) is widely used in

high-performance oversampling delta-sigma (ΔΣ) DACs because it prevents compo-

nent mismatches from limiting performance. In such DACs, both the DAC mismatch

noise and ΔΣ quantization noise are shaped such that most of their power lies outside

the signal band. Typically, the power of the ΔΣ quantization noise is higher than that

of the DAC mismatch noise, so a higher oversampling ratio is used than would be

necessary in the absence of ΔΣ quantization noise. This paper presents the first DEM

technique that allows different oversampling ratios to be applied to the two noise

sources. The technique allows much of the DEM circuitry and all but a subset of the

lowest-weighted DAC elements to run at a lower rate than would be necessary for

comparable performance in a conventional oversampling DAC. This reduces power

dissipation and DAC element switching noise.

I. INTRODUCTION

Multi-bit quantization has all but supplanted single-bit quantization in high-

performance oversampling delta-sigma (ΔΣ) DACs, resulting in significant DAC per-

This work was supported by the National Science Foundation under Award 0914748.

42

formance improvements over the last 15 years. Dynamic element matching (DEM)

has enabled this transition by preventing component mismatches and layout asymme-

tries from limiting performance in multi-bit designs [28-45].

The 1-bit DACs that make up the coarse multi-bit DAC within a ΔΣ DAC are

subject to pulse shape, timing, and amplitude errors as a result of component mis-

matches that inevitably arise during the manufacturing process and layout asymme-

tries. The resulting error component in the ΔΣ DAC output is called DAC mismatch

noise. Without DEM, the DAC mismatch noise would be a nonlinear function of the

coarse multi-bit DAC’s input sequence, so even very small mismatches and asymme-

tries would be problematic in high-performance applications. DEM addresses this

problem. It scrambles the usage pattern of the 1-bit DACs such that the DAC mis-

match noise is uncorrelated with the coarse multi-bit DAC’s input sequence, is free of

spurious tones and nonlinear distortion, and, in the case of mismatch-shaping DEM,

is spectrally shaped such that most of its power lies outside of the ΔΣ DAC’s signal

band [28,46].

In previously published ΔΣ DACs all the 1-bit DACs in the coarse multi-bit

DAC participate in the digital-to-analog conversion of the ΔΣ quantization noise.

Therefore, their oversampling ratio must be high enough that the ΔΣ quantization

noise is sufficiently attenuated within the ΔΣ DAC’s signal band. However, the power

of the ΔΣ quantization noise typically is much higher than that of the DAC mismatch

noise. Therefore, if it were not necessary to suppress the signal-band portion of the

ΔΣ quantization noise, the 1-bit DAC update-rate could be reduced because the over-

43

sampling ratio would only need to be high enough that the signal-band portion of the

DAC mismatch noise is sufficiently attenuated.

This paper presents a new DEM technique that incorporates ΔΣ modulation

such that only a subset of the lowest-weighted 1-bit DACs participate in the digital-

to-analog conversion of the ΔΣ quantization noise. Therefore, only these 1-bit DACs

need to run at the full sample-rate. The other 1-bit DACs do not carry information

about the ΔΣ quantization noise, so their update rate and the clock-rate of the DEM

logic which drives them can be reduced. This reduces power dissipation. Further-

more, reducing the update-rate of most of the 1-bit DACs reduces the number of 1-bit

DAC transitions per unit time which reduces the power of the DAC mismatch noise

component caused by 1-bit DAC transient mismatches [47].

The remainder of the paper consists of three sections. Section II presents an

overview of continuous-time segmented DEM DACs on which the results of this pa-

per build. Section III presents the new DEM technique in a general form, and Section

IV presents a specific oversampling DAC example enabled by the new technique.

II. CONTINUOUS-TIME DEM DAC OVERVIEW

A. Ideal Continuous-Time DAC Behavior

A continuous-time DAC converts a sequence of digital codewords into a con-

tinuous-time analog waveform, y(t). The digital codewords represent a sequence of

numbers, x[n], for n = 0, 1, 2, …, each of which has a value in the set

44

 , 1 , 2 , ,
2 2 2 2
M M M M⎧ ⎫⎛ ⎞ ⎛ ⎞− Δ − − Δ − − Δ Δ⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭
… (82)

where M is a positive integer and Δ is the minimum step-size of x[n]. The nth sample-

interval of the DAC, for each n = 0, 1, 2, …, is defined as the time interval nT ≤ t < (n

+ 1)T, where T is the sample-interval duration. Ideally, during the nth sample-interval,

the output of the DAC is given by

 () [] ()y t x n a t nT= − . (83)

where a(t) is a unit analog pulse that is zero outside of 0 ≤ t < T.

B. Ideal Continuous-Time DAC Behavior

A general DEM DAC architecture is shown in Figure 1 [39]. It consists of an

all-digital block called a DEM encoder, followed by N 1-bit DACs. During the nth

sample-interval, the output of the ith 1-bit DAC is

() (), if [] 1,

2()
() (), if [] 0,

2

i hi i

i

i li i

K a t nT e t nT c n
y t

K a t nT e t nT c n

Δ⎧ − + − =⎪⎪= ⎨ Δ⎪− − + − =
⎪⎩

 (84)

where ci[n] is the input to the 1-bit DAC, Ki is the weight of the 1-bit DAC, and ehi(t)

and eli(t) are the 1-bit DAC’s mismatch error pulses. The mismatch error pulses are

unique to each 1-bit DAC and represent the 1-bit DAC’s pulse shape, timing, and am-

plitude errors caused by non-ideal circuit behavior such as component mismatches

and layout asymmetries. The only assumption made about ehi(t) and eli(t) is that they

are zero outside of 0 ≤ t < T. By definition, K1 = 1 and each Ki for i = 2, 3, …, N, is a

positive integer multiple of Ki−1 with

45

1

N

i
i

K M
=

=∑ . (85)

The DEM encoder sets each of its 1-bit output sequences at time n to 0 or 1

such that

 ()1
2

1

[] []
N

i i
i

K c n x n
=

Δ − =∑ (86)

which ensures that the DAC output during the nth sample-interval would be given by

(83) in the absence of mismatch error pulses. As shown in [39], this implies that the

DEM encoder’s 1-bit output sequences can be written as

 () 1
2[] [] [] /i i ic n m x n nλ= + Δ + (87)

for i = 1, 2, …, N, where the mi are constants and λi[n] are sequences which satisfy

1 1

1, and [] 0,
N N

i i i i
i i

K m K nλ
= =

= =∑ ∑ (88)

respectively. As also shown in [39], this ensures that during the nth sample-interval

the DAC output is

 () () [] () ()DACy t t nT x n t nT e tα β= − + − + (89)

where α(t) and β(t) are pulses that are zero outside of 0 ≤ t < T, and

1

() [] ()
N

DAC i i i
i

e t K n t nTλ α
=

= −∑ , (90)

where

 () ()() () hi li
i

i

e t e tt a t
K

α −
= +

Δ
 (91)

In the ideal case of zero mismatch error pulses, α(t) = a(t), β(t) = 0, and

46

eDAC(t) = 0, so (89) reduces to (83). Although non-zero mismatch error pulses cause

α(t) to deviate from its ideal pulse shape of a(t) and give rise to a train of offset

pulses, each with a shape given by β(t), these effects do not introduce nonlinear dis-

tortion and therefore are tolerable in most applications. However, eDAC(t), which is the

DAC mismatch noise mentioned in the introduction, is related to the input sequence

and would introduce nonlinear distortion if it were not for the DEM encoder.

In DEM DACs, the 1-bit DAC weights are such that for most values that x[n]

can take on there are multiple sets of DEM encoder output bit values that satisfy (86).

The DEM encoder exploits this flexibility to ensure that each of the λi[n] sequences in

(87) is a noise-like sequence that is zero mean, free of spurious tones, and uncorre-

lated with x[n]. It follows from (90) that this ensures eDAC(t) has a noise-like structure,

is free of spurious tones, and satisfies

 (){ } () []{ }E 0 and E 0DAC DACe t e t x n= = (92)

regardless of the mismatch error pulses. Achieving these objectives ensures that the

DAC does not introduce non-linear distortion. Depending on the application, the

DEM encoder algorithm may be designed to impart additional properties to the λi[n]

sequences, such as spectral shaping to suppress the power of eDAC(t) within one or

more frequency bands.

As shown in [48] it is possible to achieve these objectives only if x[n] is re-

stricted so that it never takes on the smallest KN − 1 values or the largest KN − 1 val-

ues in (82). As explained in [48], this range restriction requirement represents a fun-

damental tradeoff between power consumption and complexity in DEM DACs. In the

47

special case of DEM DACs with unity-weighted 1-bit DACs (i.e., Ki = 1 for i = 1, 2,

…, N), the objectives can be achieved for the full range specified by (82) because KN

− 1 = 0.

C. A General Oversampling DEM DAC

The 1-bit DACs in the DEM DAC shown in Figure 9 are said to have a weight

spread of KN, because the weight of the largest 1-bit DAC is KN times that of the

smallest 1-bit DAC. Unfortunately, it is not always practical to design 1-bit DACs

with sufficiently large weight spreads to achieve the desired resolution. Oversampling

ΔΣ DACs can be used to circumvent this problem in applications where it is practical

for the sample rate to be many times higher than the Nyquist rate of the desired output

signal [28].

A general conventional oversampling ΔΣ DAC architecture is shown in Figure

10. It consists of a digital ΔΣ modulator and a DEM DAC. The input sequence, x[n],

represents a bandlimited continuous-time desired output signal with a Nyquist rate of

fN sampled at a rate of RfN, where R is greater than 1 and is called the oversampling

ratio. The digital ΔΣ modulator quantizes x[n] such that each quantized sample is a

multiple of KJ+1Δ and the quantization noise sequence, i.e., the component of the ΔΣ

modulator output arising from quantization error, is spectrally shaped so as to reside

mostly above the fN/2 bandwidth of the desired signal. The DEM DAC has the form

shown in Figure 9 but its smallest 1-bit DAC has a weight of KJ+1 instead of unity.

In such oversampling ΔΣ DACs y(t) is subjected to some form of analog filter-

ing (not shown in Figure 10) to remove most of the quantization noise and out-of-

48

band DAC mismatch noise. The resulting waveform is a high-resolution representa-

tion of x[n] despite the relatively large step-size of the smallest 1-bit DAC.

III. MULTI-RATE QUANTIZING DEM

A. Problem Statement

Oversampling ΔΣ DACs of the type shown in Figure 10 are ubiquitous in

modern communications and consumer electronics applications. However, they are

subject to inefficiency if the range spanned by x[n] is greater than twice the quantiza-

tion step-size of the digital ΔΣ modulator, i.e., if

 { } { } 1max [] min [] 2 Jnn
x n x n K +− > Δ . (93)

In an oversampling ΔΣ DAC with a given quantization step-size, increasing the range

spanned by x[n] increases the signal-to-quantization noise ratio so it is desirable to

make this span as large as is practical. Accordingly, (93) is usually satisfied in prac-

tice.

As demonstrated below, in such cases it is possible to design an oversampling

ΔΣ DAC that achieves comparable performance to that shown in Figure 10, but

wherein the update-rate of all but a subset of its lowest-weighted 1-bit DACs and the

clock-rate of the DEM encoder logic that drives them is (R/Q)fN instead of RfN, where

Q is an integer in the range 1 < Q ≤ R. Each time Q is doubled, the power dissipation

of this DEM encoder logic and the switch driver circuitry within these 1-bit DACs is

halved, so a value of Q as low as 2 can significantly reduce power dissipation.

49

Furthermore, having the update-rate of all but a subset of the lowest-weighted

1-bit DACs be (R/Q)fN instead of RfN reduces the number of 1-bit DAC transitions per

unit time compared to that in a comparable conventional oversampling ΔΣ DAC. It

also reduces the average magnitude of the transitions relative to that in a conventional

oversampling ΔΣ DAC because only lowest-weight 1-bit DACs are updated at the

higher frequency.

Although DEM prevents error associated with mismatches among the transi-

tions from introducing nonlinear distortion, it does not prevent them from introducing

noise. Therefore, reducing the number of 1-bit DAC transitions per unit time and their

average magnitude tends to decrease the oversampling DAC’s noise power compo-

nent arising from 1-bit DAC transition mismatches. In general, each time Q is dou-

bled the power of the noise resulting from transient mismatches is reduced by up to 3

dB, because for most of the 1-bit DACs the transients occur half as often. However,

doubling Q also halves the oversampling ratio for this noise component, so whether

or not the power of the signal band portion of the noise arising from transient mis-

matches is reduced relative to that in a comparable conventional ΔΣ DAC depends on

the extent of the transient mismatches among the 1-bit DACs.

B. A General MRQ-DEM DAC

A general version of the proposed oversampling DAC which achieves the ob-

jectives outlined above is shown in Figure 11. It is called a multi-rate quantizing

DEM (MRQ-DEM) DAC. It consists of an MRQ-DEM encoder followed by a bank

of 1-bit DACs, the details of which are described below. Its input sequence, x[n],

50

represents a bandlimited continuous-time desired output signal with a Nyquist rate of

fN sampled at a rate of (R/Q)fN. Therefore, the oversampling ratio of the input se-

quence is R/Q.

There are two types of 1-bit DACs in the MRQ-DEM DAC. The 1-bit DACs

that appear in the figure without shading are identical to the corresponding 1-bit

DACs in the DEM DAC shown in Figure 9. Their input sequences are updated at a

rate of (R/Q)fN and their behavior is described by (84) with T = Q/(RfN). The 1-bit

DACs that are shaded in the figure are driven by input sequences that are updated at a

rate of RfN. During the time interval mT/Q ≤ t < (m + 1)T/Q for each m = 0, 1, …, the

output of the ith of these 1-bit DACs for each i = 1, 2, …, L is

1

1

' ' , if ' [] 1,
2

' ()
' ' , if ' [] 0,

2

J hi i

i

J li i

T TK a t m e t m c m
Q Q

y t
T TK a t m e t m c m
Q Q

+

+

⎧ ⎛ ⎞ ⎛ ⎞Δ
− + − =⎪ ⎜ ⎟ ⎜ ⎟

⎪ ⎝ ⎠ ⎝ ⎠= ⎨
⎛ ⎞ ⎛ ⎞Δ⎪− − + − =⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩

 (94)

where c'i[m] is the input to the 1-bit DAC, a'(t) is the unit analog output pulse, and

e'hi(t) and e'li(t) are the 1-bit DAC’s mismatch error pulses. It is assumed that a'(t),

e'hi(t), and e'li(t) are all zero outside of 0 ≤ t < T/Q.

The MRQ-DEM encoder consists of a modified version of the DEM encoder

in Figure 9, a digital ΔΣ modulator, and a local DEM encoder (so-named because it

drives only a subset of the 1-bit DAC bank). The clock-rate of the modified DEM en-

coder is (R/Q)fN, and that of the digital ΔΣ modulator and local DEM encoder is RfN.

The modified DEM encoder’s cJ+1[n], cJ+2[n], …, cN[n] output bits are identical to

those of the DEM DAC shown in Figure 9. Its xf[n] output sequence is given by

51

 ()1
2

1
[] []

J

f i i
i

x n K c n
=

= Δ −∑ (95)

where Δ, M, Ki and ci[n] for i = 1, 2, …, J, are the same as those of the DEM DAC

shown in Figure 9 and described in Section II-B. The digital ΔΣ modulator is clocked

Q times faster than the modified DEM encoder, so it samples each value of xf[n] Q

times. Hence, its RfN -rate output sequence is

 [] [] []fx m x m Q d m e mΔΣ ΔΣ ΔΣ= ⎡ ⎤ + +⎢ ⎥⎣ ⎦⎣ ⎦ (96)

where /m Q⎢ ⎥⎣ ⎦ denotes the largest integer less than or equal to m/Q, dΔΣ[m] represents

the component of the digital ΔΣ modulator’s output sequence arising from dither, and

eΔΣ[m] is the digital ΔΣ modulator’s quantization noise.2

It follows from Figure 11 that the output of the MRQ-DEM DAC can be writ-

ten as

1

() () ()
N

i
i J

y t y t y tΔΣ
= +

= + ∑ (97)

where each yi(t) is the output of the 1-bit DAC driven by ci[n], and yΔΣ(t) is the sum of

the outputs of the L 1-bit DACs driven by the local DEM encoder, i.e.,

1

() ' ()
L

i
i

y t y tΔΣ
=

= ∑ . (98)

Thus, yΔΣ(t) can be viewed as the output of a local DEM DAC which consists

of the local DEM encoder and the subsequent L 1-bit DACs. The local DEM DAC

has the form of that shown in Figure 9, except that all of its 1-bit DACs have a weight

2 Although not shown explicitly in Figures 2 and 3, some form of dither typically is applied to digital
ΔΣ modulators to ensure that their quantization noise is well-behaved [28, 50, 51].

52

of KJ+1. Its update-rate is RfN, so its mth sample-interval, for each m = 0, 1, 2, …, is

defined as the time interval mT/Q ≤ t < (m + 1)T/Q.

By the same arguments outlined in Section II and proven in [39], the local

DEM DAC’s output during its mth sample-interval can be written as

 () ' [] ' ' ()DAC
T Ty t t m x m t m e t
Q Q

α βΔΣ ΔΣ

⎛ ⎞ ⎛ ⎞
= − + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (99)

with

 1
1 1

'() ' ' (), '() ' (),
L L

J i i i
i i

t K m t t tα α β β+
= =

= =∑ ∑ (100)

and

 1
1

' () ' [] '
L

DAC J i i
i

Te t K m t m
Q

λ α+
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ , (101)

where

 ' () ' ()' () ,
2

hi li
i

e t e ttβ +
= (102)

1

' () ' ()' () '() hi li
i

J

e t e tt a t
K

α
+

−
= +

Δ
 (103)

and the constants, m'i, and sequences, λ'i[m], satisfy

 1
1 1

' 1 and ' [] 0
L L

J i i
i i

K m mλ+
= =

= =∑ ∑ , (104)

respectively. In analogy to the DEM encoder in the DEM DAC of Figure 9, the pur-

pose of the local DEM encoder is to ensure that e'DAC(t) has a noise-like structure, is

free of spurious tones, and satisfies

53

 (){ } () []{ }E ' 0 and E ' 0DAC DACe t e t x mΔΣ= = (105)

regardless of the mismatch error pulses of the shaded 1-bit DACs, e'hi(t) and e'li(t).

Achieving these objectives ensures that the local DEM DAC does not introduce

nonlinear distortion, which is a necessary condition for the MRQ-DEM DAC not to

introduce nonlinear distortion. As in the case of the DEM encoder shown in Figure 9,

the local DEM encoder algorithm may be designed to impart additional properties to

the λ'i[m] sequences, such as spectral shaping to suppress the power of e'DAC(t) within

one or more frequency bands.

It follows from (96) and (99) that during each time interval mT/Q ≤ t < (m +

1)T/Q

() '

' ()

f

DAC

Ty t t m x m Q
Q

Tt m e t
Q

α

β

ΔΣ

ΔΣ

⎛ ⎞
= − ⎡ ⎤⎢ ⎥⎜ ⎟ ⎣ ⎦⎣ ⎦

⎝ ⎠
⎛ ⎞

+ − +⎜ ⎟
⎝ ⎠

 (106)

where

 () ()() ' [] [] 'DAC DAC
Te t t m d m e m e t
Q

αΔΣ ΔΣ ΔΣ

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠
 (107)

During each sample-interval nT ≤ t < (n + 1)T, this can be written as

 () ()() '' [] '' ()f DACy t t nT x n t nT e tα βΔΣ ΔΣ= − + − + (108)

where

1

0

''() '
Q

k

kt t T
Q

α α
−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ , (109)

54

1

0

''() '
Q

k

kt t T
Q

β β
−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ , (110)

and eΔΣDAC(t) is given by (107) and (101) with

 t nTm nQ Q
T

−⎢ ⎥= + ⎢ ⎥⎣ ⎦
. (111)

With (100), this implies that during the nth sample-interval, nT ≤ t < (n + 1)T,

eΔΣDAC(t) has the form

()1

1

() [] [] ' ' []

'

L

DAC J i i
i

i

e t K d m e m m m

t nT Tt nT Q
T Q

λ

α

ΔΣ + ΔΣ ΔΣ
=

⎧
= + +⎡ ⎤⎨ ⎣ ⎦

⎩
⎛ ⎞ ⎫−⎢ ⎥⋅ − − ⎬⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠ ⎭

∑
 (112)

The output of each non-shaded 1-bit DAC in Figure 11 during the nth sample-

interval is given by (94), which is equivalent to

 () () ()1
2() []i i i i iy t c n t nT K t nTα β= − − Δ + − (113)

with

 () () () ()() () and ()
2

hi li hi li
i i

i

e t e t e t e tt a t t
K

α β− +
= + =

Δ
. (114)

Substituting (95) and (108) into (97), and substituting (113) and then (87) into

the result leads to the conclusion that during the nth sample-interval, nT ≤ t < (n +

1)T,

 () '''() [] '''() ''' () ()DAC DACy t t nT x n t nT e t e tα β ΔΣ= − + − + + (115)

with

1 1

'''() ''() ()
J N

i i i i i
i i J

t t K m K m tα α α
= = +

= +∑ ∑ , (116)

55

1

'''() ''() ()
N

i
i J

t t tβ β β
= +

= + ∑ , (117)

and

1 1

''' () ''() [] [] ()
J N

DAC i i i i i
i i J

e t t nT K n K n t nTα λ λ α
= = +

= − + −∑ ∑ (118)

where eΔΣDAC(t) is given by (112), αi(t) and βi(t) are given by (114), and α''(t), β''(t),

α'i(t) and β'i(t) are given by (109), (110), (102) and (103), respectively.

It follows from (88) and (118) that if α''(t) and αi(t) for each i = J+1, …, N

were identical, then e'''DAC(t) would be zero. Of course, given that α''(t) is a concatena-

tion of Q pulses each with a maximum duration of T/Q and each αi(t) is a single pulse

of duration T, this is not the case in general. However, as explained above, the modi-

fied DEM encoder ensures that each of the λi[n] sequences is a noise-like sequence

that is zero mean, free of spurious tones, and uncorrelated with x[n]. Therefore, (118)

implies that e'''DAC(t) also has a noise-like structure, is free of spurious tones, and sat-

isfies

 (){ } () []{ }E ''' 0 and E ''' 0DAC DACe t e t x n= = (119)

regardless of both the 1-bit DAC mismatch error pulses and any deviations between

α''(t) and αi(t) for i = J+1, …, N.

Furthermore, in practice KN tends to be much larger than KJ+1, so the term in

e'''DAC(t) corresponding to mismatches between α''(t) and the αi(t) pulses, i.e., the first

summation term in (118), tends to have a much lower weight than the sum of the rest

of the terms in e'''DAC(t). This mitigates the effect of the inherent mismatch between

56

α''(t) and the αi(t) pulses. The effect can be mitigated further over the signal band-

width if x[n] represents an interpolated desired signal and the MRQ-DEM encoder is

such that e'''DAC(t) has a highpass spectral shape as in the example MRQ-DEM DAC

presented in the next section.

IV. A MULTI-RATE QUANTIZING DEM DAC EXAMPLE

This section presents the details of an example MRQ-DEM DAC which ad-

heres to the general structure shown in Figure 11. As described in Section III, each

MRQ-DEM DAC can be viewed as a modified version of a particular DEM DAC that

adheres to the general structure shown in Figure 9. The details of the particular under-

lying DEM DAC upon which the MRQ-DEM DAC example is based are presented

below. Then a functional description of the MRQ-DEM DAC example is presented

followed by that of a comparable conventional ΔΣ DAC. Finally, tradeoffs between

the two example oversampling DACs are described.

A. The Underlying DEM DAC

The underlying DEM DAC upon which the MRQ-DEM DAC example is

based is shown in Figure 12. The weights of its 1-bit DACs are

1

2 1 2 2 for 1,...,11, and
2048 for 23, ,30.

i
i i

i

K K i
K i

−
− = = =
= = …

 (120)

Thus, the first two 1-bit DACs each have a weight of unity, the next two each

have a weight of 2, the next two each have a weight of 4, and so on, up to the 22nd 1-

57

bit DAC which has a weight of 1024. The 23rd through 30th 1-bit DACs each have a

weight of 2048.

In principle, the DAC can accommodate an input sequence that takes on the

range of values given by (82), where it follows from (85) and (120) that M = 20478.

However, as described in Section II, a necessary condition for any DEM encoder to

ensure that the DAC mismatch noise satisfies (92) and is free of nonlinear distortion

regardless of the mismatch error pulses is that x[n] be restricted to avoid the smallest

KN − 1 values and the largest KN − 1 values of (82). The DEM encoder described be-

low is optimal in the sense that its DAC mismatch noise has these properties without

any additional restrictions on x[n].

In terms of analyzing a DAC’s performance, it is convenient to interpret the

sequence of input codewords as a sequence of numerical values, x[n], each in the set

(82) as described in Section II. However, when implementing the DEM encoder, it is

often convenient to interpret the sequence of input codewords as a sequence of non-

negative integers, c[n], related to x[n] by

 [][]
2

x n Mc n = +
Δ

. (121)

Therefore, without loss of generality, c[n] can be considered to be the DEM

encoder’s input sequence. Given that x[n] is restricted to avoid the smallest KN − 1

values and largest KN − 1 values of (82) as described above, it follows that

 [] {2047, 2048, ...,18430,18431}c n ∈ (122)

for each n.

58

As shown in Figure 14, the DEM encoder of the underlying DEM DAC con-

sists of 29 digital switching blocks, labeled Sk,r for k = 1, 2…, 14, and r = 1, 2, …, 15,

configured in a tree structure [48]. The 11 switching blocks that are shaded in the fig-

ure are called segmenting switching blocks and the other 18 switching blocks are

called non-segmenting switching blocks.

The functional details of the switching blocks are shown in Figure 15. The top

and bottom outputs of each segmenting switching block, Sk,1, are

 (),1 ,1 ,1
1 [] 1 [] , and 1 [],
2 k k kc n s n s n− − + (123)

respectively, where ck,1[n] is the switching block input sequence, and sk,1[n], called a

switching sequence, is 0 when ck,1[n] is odd and 1 or −1 otherwise. Similarly, the top

and bottom outputs of each non-segmenting switching block, Sk,r, are

 () (), , , ,
1 1[] [] and [] [] ,
2 2k r k r k r k rc n s n c n s n− + (124)

respectively, where ck,r[n] is the switching block input sequence, and the switching

sequence, sk,r[n], in this case is 0 when ck,r[n] is even and 1 or −1 otherwise. Regard-

less of the switching block type, each switching sequence is generated in two’s com-

plement format by the logic shown in Figure 15c, wherein dk[n] for k = 1, 2, …, 14

are independent random sequences that each take on values of 0 and 1 with equal

probability.

A nearly identical analysis to that presented in [39] shows that (87) through

(91) hold with

59

 14

0, for 1 22,
2 , for 23 30,i

i
m

i−

≤ ≤⎧
= ⎨ ≤ ≤⎩

 (125)

and each λi[n] sequence is a linear combination of the switching sequences. There-

fore, provided the switching sequences are noise-like sequences that are zero mean,

free of spurious tones, and uncorrelated with x[n], then eDAC(t) has a noise-like struc-

ture, is free of spurious tones, and satisfies (92).

It can be verified from Figure 15c that

 , , ,[] [] [1]k r k r k rs n t n t n= − − (126)

with

, ,

, , ,

, ,

[1], if [] is odd,
[] 0, if [] is even and [1] 0,

2 [] 1, if [] is even and [1] 0,

k r k r

k r k r k r

k k r k r

t n c n
t n c n t n

d n c n t n

⎧ −
⎪= − ≠⎨
⎪ − − =⎩

 (127)

when k = 4, 5, …, or 14, and

, ,

, , ,

, ,

[1], if [] is even,
[] 0, if [] is odd and [1] 0,

2 [] 1, if [] is odd and [1] 0,

k r k r

k r k r k r

k k r k r

t n c n
t n c n t n

d n c n t n

⎧ −
⎪= − ≠⎨
⎪ − − =⎩

 (128)

when k = 1, 2, or 3. The results presented in [49] imply that the sk,r[n] sequences for k

= 1, 2, …, 14 and r = 1, 2, …, 15, are zero-mean sequences that are free of spurious

tones, have a highpass spectral shape with a zero-frequency null, and are uncorrelated

with each other and x[n]. Given that the λi[n] sequences are each a linear combination

of the switching sequences, it follows from (90) that eDAC(t) also has these properties.

60

B. MRQ-DEM DAC Functional Description

A high-level diagram of the example MRQ-DEM DAC is shown in Figure 16.

The top 14 1-bit DACs and their input sequences, c17[n], c18[n], …, c30[n], are identi-

cal to those in the underlying DEM DAC shown in Figure 12 with an update rate of

(R/Q)fN. The bottom 4 1-bit DACs each have the minimum weight of K17 = 256 and

an update-rate of RfN.

The xf[n] output of the modified DEM encoder is given by (95) with J = 16.

Therefore, the ci[n] sequences that determine xf[n] are the 16 outputs of the bottom 8

non-segmenting switching blocks in the DEM encoder shown in Figure 13. As im-

plied by (124), the sum of the output sequences from each of these switching blocks

is equal to the switching block’s input sequence. Therefore, (95) can be rewritten as

 ()
8

1
1,

1
[] 2 [] 1r

f r
r

x n c n−

=

= Δ −∑ (129)

where c1,r[n] is the bottom output of the S15−r,1 switching block for r = 1, 2, …, 8. It

follows that the modified DEM encoder in Figure 15 can be obtained from the DEM

encoder in Figure 13 by replacing the S1,r switching blocks for r = 1, 2, …, 8 with a

power-of-two summing network described by (129).

The resulting modified DEM encoder is shown in Figure 16. Each c1,r[n] se-

quence in (129) is equal to the right-most expression in (123) with k = 15−r and each

sk,1[n] sequence can only take on values of −1, 0, and 1, so it follows from (129) that

 [] { 255 , 254 , 253 , ... , 255 }fx n ∈ − Δ − Δ − Δ Δ (130)

for each n (the LSB of the codeword sequence that represents xf[n] in the modified

61

DEM encoder shown in Figure 16 is defined to have a weight of Δ).

A functional diagram of the dithered second-order digital ΔΣ modulator in the

MRQ-DEM encoder is shown in Figure 17. Its input-output relationship and quantiza-

tion noise are identical to those of a comparably configured second-order digital ΔΣ

modulator with two accumulators in the forward path and feedback from just the out-

put of the quantizer, but it offers the advantage of a slightly more efficient digital im-

plementation [28].

The dither sequence, dΔΣ[m], is a white random sequence that takes on values

of 0 and Δ with equal probability. Given that the minimum step-size of xf[n] is Δ, the

dither is called least-significant-bit (LSB) dither.

The output of the digital ΔΣ modulator, xΔΣ[m], satisfies (96) and the input

range indicated by (130) implies that

 [] { 512 , 256 , 0, 256 , 512 }x mΔΣ ∈ − Δ − Δ Δ Δ (131)

for each m [28]. The LSB dither ensures that eΔΣ[m] is asymptotically independent of

xf[n] and dΔΣ[m], and has a power spectrum equal to that of the output of a filter with

transfer function (1−z−1)2 driven by white noise with a variance of 215Δ2 [50, 51].

Given that xΔΣ[m] takes on only five values, only three switching blocks are

necessary in the local DEM encoder: S2,1, S1,1, and S1,2. These switching blocks have

the same properties as those in the DEM encoder described above, except that they

are clocked at a rate of RfN instead of (R/Q)fN. The input to the local DEM encoder’s

S2,1 switching block is

62

 [][] 2
256
x mc m ΔΣ

ΔΣ = +
Δ

. (132)

The inputs to the local DEM encoder’s S1,1 and S1,2 switching blocks are the

bottom and top outputs, respectively, of its S2,1 switching block. The local DEM en-

coder’s outputs are the outputs of its S1,1 and S1,2 switching blocks.

C. Signal Path Bypasses the Fast 1-bit DACs

In both conventional ΔΣ DACs and MRQ-DEM DACs, DEM eliminates har-

monic distortion that would otherwise arise from 1-bit DAC pulse shape, amplitude,

and timing errors, but it does not prevent harmonic distortion caused by nonlinearity

introduced by the individual 1-bit DACs. For example, a major cause of such nonlin-

earity is intersymbol interference [52]. In most cases, 1-bit DAC nonlinearity arises

from parasitic circuit elements, so for a given circuit topology it tends to increase

with the 1-bit DAC update-rate.

An important feature of the MRQ-DEM DAC example is that nonlinearity in-

troduced by the high update-rate 1-bit DACs does not introduce harmonic distortion.

This is because each c1,r[n] term in (129) is equal to the right-most expression in

(123), so xf[n] is a pseudo-random sequence that is uncorrelated with the MRQ-DEM

DAC’s input sequence. Consequently, nonlinearity introduced by the 1-bit DACs

driven by the digital ΔΣ modulator does not cause harmonic distortion. This is an ad-

vantage of the MRQ-DEM DAC over a comparable conventional ΔΣ DAC wherein

all the 1-bit DACs (all of which operate at the full update rate) convert sequences that

are correlated with the DAC’s input sequence, so any nonlinearity they introduce

63

harmonically distorts the input sequence.

D. A Comparable Conventional ΔΣ DAC Example

A conventional ΔΣ DAC with an input dynamic range that is comparable to

that of the example MRQ-DEM DAC described in Section IV-C above is shown in

Figure 18. The dithered second-order digital ΔΣ modulator is the same as that shown

in Figure 17, except it is driven by the ΔΣ DAC’s input sequence instead of

/fx m Q⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦ . The switching blocks and 1-bit DACs are identical to the correspond-

ing components of the DEM DAC shown in Figures 13-5 and described above with T

= 1/(RfN).

It can be verified that the DEM DAC’s input range restriction described in

Section II-B and the no-overload range of the ΔΣ modulator described in [28] imply

that the ΔΣ DAC’s input sequence must be restricted to values in the range

 { 7808 , 7807 , 7806 , 7808 }− Δ − Δ − Δ Δ… (133)

In contrast, it follows from (121) and (122) that the example MRQ-DEM

DAC’s input sequence must be restricted to values in the range

 { 8192 , 8191 , 8190 , 8192 }− Δ − Δ − Δ Δ… (134)

Therefore, the MRQ-DEM DAC and the ΔΣ DAC examples have input dynamic

ranges that are within half a dB of each other, so it is reasonable to compare their sig-

nal to quantization and mismatch noise ratio performances.

The input sequence to the ΔΣ DAC example has an update-rate of RfN whereas

that of the MRQ-DEM DAC has an update-rate of (R/Q)fN. Consequently, the signal

64

band replicas in the output signals from the two DAC examples occur at multiples RfN

and (R/Q)fN, respectively. This is a potential disadvantage of the MRQ-DEM DAC

relative to the ΔΣ DAC in applications where Q is large and it is necessary to filter

out the signal band replicas.

E. Performance Comparison

Results from simulations of the two oversampling DAC examples that support

the theoretical results presented above are presented in this section. The simulations

use dual return-to-zero (RTZ) 1-bit DACs, each of which is implemented as the sum

of two half-period RTZ 1-bit DACs offset in time by half a period [52]. Ideally, this

achieves the effect of having non-RTZ 1-bit DACs without incurring as much nonlin-

ear distortion from inter-symbol interference as tends to occur with conventional non-

RTZ 1-bit DACs.

The output pulses from actual 1-bit DAC circuits depend on many non-ideal

effects and are highly dependent on circuit topology and layout. The purpose of the

simulations described below is to qualitatively demonstrate the results described

above, so a first-order pulse shape model with exponential settling has been adopted

for simplicity and ease of explanation. Specifically, during the nth sample-interval the

outputs of the two RTZ 1-bit DACs in each dual-RTZ 1-bit DAC with an update rate

of (R/Q)fN are given by (84) with a(t) equal to

 , , , , and , , , ,
2r f r f

N N

Q T Qp t p t
Rf Rf

τ τ τ τ
⎛ ⎞ ⎛ ⎞

−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (135)

respectively, where

65

 () () ()2(2)

1 , if 0 ,
2

, , , 1 , if ,
2

0, otherwise,

r

fr

t

t TT
r f

Te t

Tp t T e e t T

τ

τττ τ

−

− −−

⎧ − ≤ <⎪
⎪⎪= −⎨ ≤ <
⎪
⎪
⎪⎩

 (136)

and τr and τf are the rising and falling edge time constants. Similarly, the outputs of

the two RTZ 1-bit DACs in each dual-RTZ 1-bit DAC with an update rate of RfN are

given by (94) with a'(t) equal to

 1 1, , , , and , , , ,
2r f r f

N N

Tp t p t
Rf Rf

τ τ τ τ
⎛ ⎞ ⎛ ⎞

−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (137)

respectively.

The simulations model the mismatch error pulses by applying randomly cho-

sen static errors to the amplitude and time constants for each RTZ 1-bit DAC that de-

pend upon whether the 1-bit DAC’s input bit is high or low. For example, the result-

ing mismatch error pulses for the first RTZ 1-bit DAC in the ith dual-RTZ 1-bit DAC

with an update rate of (R/Q)fN are

 ()() 1 , , , ()
2hi i ahi r rhi f fhi

N

Qe t K p t a t
Rf

ε τ ε τ ε
⎡ ⎤⎛ ⎞Δ

= + + + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (138)

and

 ()() () 1 , , ,
2li i ali r rli f fli

N

Qe t K a t p t
Rf

ε τ ε τ ε
⎡ ⎤⎛ ⎞Δ

= − + + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (139)

where εahi and εali are amplitude errors and εrhi, εfhi, εrli, and εfli, are time constant er-

rors, all of which are randomly chosen fixed values.

Figure 19 shows output power spectra from simulations of the two DAC ex-

66

amples, each with a full-scale sinusoidal input sequence, R = 40, 0.1% 1-bit DAC

amplitude deviations, 0.5% 1-bit DAC time constant deviations, and the same

1/(20RfN) time constant for all the 1-bit DACs. For the minimum-weight 1-bit DACs

the amplitude deviations were randomly chosen with a standard deviation of 0.1%,

and the time constant deviations were randomly chosen with a standard deviation of

0.5% (e.g., for the minimum-weight 1-bit DACs εahi and εali in (138) and (139) are

samples of a random variable with a standard deviation of 10−3, whereas εrhi, εfhi, εrli,

and εfli are samples of a random variable with a standard deviation of 5·10−3). For

each of the other 1-bit DACs the standard deviations of the error are scaled by

(Ki·/256)0.5 to account for the 20.5 factor increase in mismatch standard deviation that

typically occurs in CMOS integrated circuits when the size of matched components is

doubled [53]. Identical mismatches were used for the corresponding 1-bit DACs in

the two DAC examples. The MRQ-DEM DAC was simulated with Q = 4, so the

clock-rate of the modified DEM encoder and the update-rate of all but four of the

minimum-weight 1-bit DACs is a quarter of those of the DEM encoder and 1-bit

DACs in the ΔΣ DAC.

The simulation results indicate that the peak SNR over the signal band is 86.2

dB for the ΔΣ DAC and 84.9 dB for the MRQ-DEM encoder. As expected, no har-

monic distortion was detectable in either case. The simulations were run for several

different random number seeds, and the results indicate that on average the peak SNR

of the MRQ-DEM DAC example is 1.3 dB lower than that of the conventional ΔΣ

DAC example. Therefore, relative to the ΔΣ DAC example the MRQ-DEM DAC ex-

67

ample trades an average of 1.3 dB of peak SNR for a four-fold reduction in the up-

date-rate of all but four of its lowest-weighted 1-bit DACs and the clock rate of the

logic that drives them.

Figure 20 shows the output spectra from simulations of the MRQ-DEM DAC

example configured as described above but with DEM disabled. This is achieved by

effectively replacing both the underlying DEM encoder used to generate the modified

DEM encoder and the local DEM encoder with thermometer encoders. As expected,

the 1-bit DAC mismatches give rise to significant harmonic distortion across the

spectrum in the absence of DEM. When DEM was enabled for this case as well as all

of numerous other cases simulated by the authors, no harmonic distortion was detect-

able.

ACKNOWLEDGEMENTS

Chapter 2, in full, has been submitted for publication to the IEEE Transactions

on Circuits and Systems I: Regular Papers. The dissertation author is the primary in-

vestigator and author of this paper. Professor Ian Galton supervised the research

which forms the basis for this paper.

68

FIGURES

Figure 9: A general DEM DAC architecture.

Figure 10: A general conventional oversampling DEM DAC architecture.

69

y(t)Modified
DEM

Encoder

x[n]

xf[n]

(R/Q)fN

1-b DAC KJ+1Δ

1-b DAC KNΔ

Local
DEM

Encoder
Digital ΔΣ
Modulator

1-b DAC KJ+2Δ

RfN RfN

Multi-Rate Quantizing DEM Encoder

1-b DAC KJ+1Δ

1-b DAC KJ+1Δ

cN[n]

cJ+1[n]

cJ+2[n]

c'1[m]

c'L[m]
xΔΣ[m]

Figure 11: A general oversampling DEM DAC based on the proposed multi-rate
quantizing DEM encoder.

DEM
Encoder

c[n]

clk

1-b DAC 2048Δ

1-b DAC 2048Δ

1-b DAC 1024Δ

1-b DAC 1024Δ

1-b DAC 512Δ

1-b DAC 512Δ

1-b DAC 2Δ

1-b DAC 2Δ

1-b DAC Δ

1-b DAC Δ

y(t)

c4[n]

c3[n]

c2[n]

c1[n]

c22[n]

c21[n]

c20[n]

c19[n]

c23[n]

c30[n]

Figure 12: The underlying DEM DAC from which the example MRQ-DEM DAC is
derived.

70

Figure 13: Structure of the DEM encoder in the underlying DEM DAC from which
the example MRQ-DEM DAC is derived.

71

(a)

(b)

(c)

Q
Q

D

1

0 S

clk

1

0

S
Q
Q

D

1

0 S

clk

dk[n]

sk,r[n] Generator

1
sk,r[n]

2
MSB

LSB

1/2

2

k

1
sk,1[n]

Generator

LSB

MSB
k+1

Sk,1

1/2

1/2

k

k

sk,r[n]
Generator

LSB

MSB

k+1

Sk,r

Figure 14: Functional diagrams of (a) each segmenting switching block (b) each non-
segmenting switching block, and c) the switching sequence generator within each
switching block.

72

Figure 15: High-level diagram of the example MRQ-DEM DAC.

73

c[n]

S13,1

S14,1

S3,1

S2,1

S2,2 S1,14

S1,15

S1,12

S1,13

S1,10
S5,1

S4,1 S1,11

Modified DEM Encoder

S7,1

S6,1 S1,9

c21[n]
c22[n]

c19[n]
c20[n]

c23[n]

c26[n]
c27[n]

c24[n]
c25[n]

c28[n]
c29[n]
c30[n]

c17[n]
c18[n]

128

 2 −255

xf[n]

(R/Q)fN
Figure 16: Top-level functional diagram of the modified DEM encoder in the MRQ-
DEM DAC.

z−1(2−z−1)

Round to
Nearest

Multiple of
256Δ

xΔΣ[m]

dΔΣ[m]

()fx m R⎢ ⎥⎣ ⎦

Figure 17: Functional diagram of the dithered second-order digital ΔΣ modulator.

74

Figure 18: A conventional ΔΣ DAC with an input dynamic range comparable to that
of the example MRQ-DEM DAC: (a) high-level diagram of the ΔΣ DAC, (b) top-
level functional diagram of the DEM encoder.

75

(a)

(b)

dB
/H

z

10
4

10
5

10
6

10
7

10
8

10
9-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

dB
/H

z

Frequency (Hz)
10

4
10

5
10

6
10

7
10

8
10

9-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

Figure 19: Representative output power spectra from simulations of (a) the ΔΣ DAC
and (b) the MRQ-DEM DAC with amplitude and time constant mismatches among
the 1-bit DACs.

dB
/H

z

Frequency (Hz)
10

3
10

4
10

5
10

6
10

7
10

8
10

9-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

Figure 20: Representative output power spectrum from simulation of the MRQ-DEM
DAC with DEM disabled.

76

REFERENCES

28. R. Schreier, G. C. Temes, Understanding Delta-Sigma Data Converters, John

Wiley and Sons, 2005.

29. M. J. Story, “Digital to analogue converter adapted to select input sources based
on a preselected algorithm once per cycle of a sampling signal,” U.S. Patent 5
138 317, August 11, 1992.

30. H. S. Jackson, “Circuit and method of cancelling nonlinearity error associated
with component mismatches in a data converter,” U.S. Patent 5 221 926, June
22, 1993.

31. R. Schreier, B. Zhang, “Noise-shaped multibit D/A converter employing unit
elements,” Electronics Letters, vol. 31, pp. 1712-1713, September, 1995.

32. R. T. Baird, T. S. Fiez, “Linearity enhancement of ΔΣ A/D and D/A converters
using data weighted averaging,” IEEE Transactions of Circuits and Systems II,
Analog and Digital Signal Processing, vol. 42, pp. 753-762, December, 1995.

33. T. W. Kwan, R. W. Adams, R. Libert, “A stereo multibit Sigma Delta DAC
with asynchronous master-clock interface,” IEEE Journal of Solid-State Cir-
cuits, vol. 31, no. 12, pp. 1881-1887, Dec. 1996.

34. I. Galton, “Spectral shaping of circuit errors in digital-to-analog converters,”
IEEE Transactions of Circuits and Systems II, Analog and Digital Signal Proc-
essing, vol. 44, pp. 808-817, October, 1997.

35. T. Shui, R. Schreier, F. Hudson, “Mismatch shaping for a current-mode multibit
delta-sigma DAC,” IEEE Journal of Solid State Circuits, vol. 34, no. 3, pp.
331-338, March, 1999.

36. I. Fujimori, A. Nogi, T. Sugimoto, “A Multibit Delta-Sigma Audio DAC with
120-dB Dynamic Range,” IEEE Journal of Solid State Circuits, vol. 35, no. 8,
pp.1066-1073, August, 2000.

37. S. Luschas, R. Schreier, H. S. Lee, “Radio Frequency Digital-to-Analog Con-
verter,” IEEE Journal of Solid State Circuits, vol. 39, no. 9, pp.1462-1467, Sep-
tember, 2004.

38. B. Jewett, J. Liu, K. Poulton, “A 1.2Gs/s 15b DAC for precision signal genera-

77

tion,” IEEE International Solid-State Circuits Conference, pp. 110-111, Febru-
ary, 2005.

39. T. S. Kaplan, J. F. Jensen, C. H. Fields, M. F. Chang, “A 2-GS/s 3-bit ΔΣ-
Modulated DAC With Tunable Bandpass Mismatch Shaping,” IEEE Journal of
Solid-State Circuits, vol. 40, no. 3, pp. 603-610, March 2005.

40. K. L. Chan, J. Zhu, I. Galton, “Dynamic Element Matching to Prevent Nonlin-
ear Distortion From Pulse-Shape Mismatches in High-Resolution DACs,” IEEE
Journal of Solid-State Circuits, vol. 43, no. 9, pp. 2067-2078, September 2008.

41. K. Nguyen, A. Bandyopadhyay, R. Adams, K. Sweetland, P. Baginski, “A 108
dB NSR 1.1 mW Oversampling Audio DAC With A Three-level DEM Tech-
nique,” IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2592-2600,
December, 2008.

42. K. Lee, Q. Meng, T. Sugimoto, K. Hamashita, K. Takasuka, S. Takeuchi. U.
Moon, G. C. Temes, “A 0.8 V, 2.6 mW, 88 dB Dual-Channel Audio Delta-
Sigma D/A Converter With Headphone Driver,” IEEE Journal of Solid-State
Circuits, vol. 44, no. 3, pp. 916-927, March, 2009.

43. A. Bandyopadhyay, M. Determan, S. Kim, K. Nguyen, “A 120dB-SNR 100dB-
THD+N 21.5mW/Channel Multibit CT ΔΣ DAC,” IEEE International Solid-
State Circuits Conference, pp. 482-483, February, 2011.

44. L. Risbo, R. Hezar, B. Kelleci, H. Kiper, M. Fares, “Digital Approaches to ISI-
Mitigation in High-Resolution Oversampled Multi-Level D/A Converters,”
IEEE Journal of Solid-State Circuits, vol. 46, no. 12, pp. 2892-2903, December
2011.

45. F. Van de Sande, et. al. “A 7.2 GSa/s, 14 Bit or 12 GSa/s, 12 Bit Signal Genera-
tor on a Chip in a 165 GHz fT BiCMOS Process,” IEEE Journal of Solid-State
Circuits, vol. 47, no. 4, pp. 1003-1010, April 2012.

46. I. Galton, “Why Dynamic-Element-Matching DACs Work”, IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 57, no. 2, pp. 69-74, February
2010.

47. T. Shui, R. Schreier, F. Hudson, “Mismatch Shaping for a Current-Mode Multi-
bit Delta-Sigma DAC,” IEEE Journal of Solid-State Circuits, vol. 34, no. 3, pp.
331-338, March 1999.

78

48. K. L. Chan, N. Rakuljic, I. Galton, “Segmented Dynamic Element Matching for
High-Resolution Digital-to-Analog Conversion,” IEEE Transactions On Cir-
cuits and Systems I: Regular Papers, vol. 55, pp. 3383-3392, December, 2008.

49. J. Welz, I. Galton, “A Tight Signal-Band Power Bound on Mismatch Noise in a
Mismatch-Shaping Digital-to-Analog Converter,” IEEE Transactions on Infor-
mation Theory, vol. 50, no. 4, pp. 593-607, April, 2004.

50. I. Galton, “One-bit dithering in delta-sigma modulator-based D/A conversion,”
IEEE International Symposium on Circuits and Systems, vol. 2, pp. 1310-1313,
May 1993.

51. S. Pamarti, J. Welz, I. Galton, “Statistics of the Quantization Noise in 1-Bit
Dithered Single-Quantizer Digital Delta–Sigma Modulators,” IEEE Transac-
tions on Circuits and Systems I: Regular Papers, vol. 54, no. 3, pp. 492-503,
March 2007.

52. R. Adams, K. Q. Nguyen, K. Sweetland, “A 113-dB SNR Oversampling DAC
with Segmented Noise-Shaped Scrambling,” IEEE Journal of Solid State Cir-
cuits, vol. 33, no. 12, pp. 1871-1878, December 1998.

53. M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching Prop-
erties of MOS Transistors,” IEEE Journal of Solid State Circuits, vol. 24, no. 5,
pp. 1433-1440, October 1989.

79

Chapter 3

A 3-4 GHz GSM-Compliant 1.0/1.2V ΔΣ FDCBased

Fractional N PLL in 65 nm CMOS Technology

Abstract—This Chapter presents a ΔΣ FDC based fractional-N phase-locked loop for

frequency synthesis. The PLL was built to showcase the capability of the architecture

analyzed in Chapter 1 to comply with the most stringent wireless communication

standards. Several enhancements were added to the base architecture of Chapter 1,

including an FDC quantization noise cancelling algorithm and an hardware efficient

multi-rate quantizing DEM encoder for digital to frequency conversion. The fre-

quency synthesizer was fabricated in a 65 nm CMOS process and draws 20.4 mA of

current from 1.2 V and 1.0 V power supplies. Preliminary measurements results for

the PLL are available at the end of the Chapter.

I. ARCHITECTURE OVERVIEW

The implemented synthesizer represents a proof of concept for the architec-

ture presented in Chapter 1. As such, the fundamental building blocks of the phase-

locked loop are the ones shown in Figure 2. The amount of noise introduced by the

circuits that constitute the synthesizer is comparable to what assumed in the design

example of Chapter 1. Hence, the performance of the ΔΣ FDC based fractional-N

PLL prototype can be expected to be comparable to the performance obtained in

Chapter 1 for the design example provided.

80

In order to optimize the architecture for the available 65 nm CMOS process,

some design parameters were varied with respect to Table 1. The parameters for the

prototype are summarized in Table 2. The circuit implementation of the main FDC

components is described in detail in Section II.

A few additions have been made to the standard topology shown in Figure 2,

resulting in the architecture shown in Figure 21.

A quantization noise cancelling algorithm has been implemented to reduce the

impact of the FDC quantization noise to the overall synthesizer output phase noise. A

general description of the algorithm and details of its implementation are provided in

Section III.

The logic necessary to implement the quantization noise cancelling algorithm

is merged with the phase-to-frequency accumulator and the digital loop filter in the

digital loop controller, described in Section IV.

In order to meet the stringent phase noise specifications of the GSM standard

the digitally controlled oscillator minimum frequency step needs to be about 200 Hz.

Unfortunately, the minimum capacitance step achievable in the technology node used

does not allow for such a fine frequency resolution. Hence the digital loop controller

output need to be requantized by an oversampling quantizer. To perform the men-

tioned requantization, while preventing mismatches among the varactors from intro-

ducing distortion that will translate in spurious tones at the output of the PLL, the

MRQ-DEM encoder of Figure 15 has been interposed between the digital loop con-

troller output and the DCO fine tuning varactor bank. In order to reduce the latency,

81

area, and power consumption of the encoder, the adder-free simplified logic imple-

mentation described in Section V has been devised. Details of the digitally controlled

oscillator are presented in Section VI.

The timing of the FDC-PLL has been modified with respect with what de-

scribed in Chapter 1. When the PLL is locked, the presence of an offset current

source, described in Chapter 1 and Section II, causes the nth divider edge to always

occur after the nth reference edge. The ADC latches are then turned on following the

phase-frequency detector reset pulse, as described in Chapter 1, by a rising edge of

vADC_clk. The ADC output is passed to the 2−z−1 block and the digital loop controller,

both of which are clocked on the reference edge. When the divider is ready to accept

a new modulus, a signal named load notifies the 2−z−1 block to update its output v[n].

Finally, for reasons described at length in Section V, the MRQ-DEM encoder

output is applied to the DCO on a PLL output edge instead than on a reference edge.

The output of the local DEM encoder is applied to the oscillator on the rising edge of

a divided down version of the synthesizer output, called clkP. The modified DEM en-

coder outputs are instead applied to the DCO on the divider rising edge delayed by

one cycle of clkP. The corresponding clock signal is named vdivP.

A simplified timing diagram for the synthesizer when locked is shown in

Figure 22, where x[n] represents the input sequence to the MRQ-DEM encoder, and

xf[n] was defined in Chapter 2.

82

II. ΔΣ FDC CIRCUIT IMPLEMENTATION DETAILS

A. Charge Pump

To minimize the impact of finite turn on time of the charge pump current

sources, a delay TDZ = 1ns was added in the tri-state phase-frequency detector reset

path to ensure that all charge pump current sources fully settle each reference period,

as explained in Chapter 1. Furthermore, the addition of an offset current of nominal

value IOC = −ICP and duration TOC = 2ns, effectively allows the phase error between

the nth reference rising edge and the nth divider edge to modulate only the duration

for which current is sourced to the integrating capacitor. As a result, static mis-

matches between the current sources in the single-ended charge pump do not signifi-

cantly affect the performance of the ΔΣ FDC [14, 23, 24].

Although the integrator represented by the combination of the charge pump

and capacitor in the FDC-PLL is immune to the level of static mismatches expected

for current sources in a 65nm CMOS process, the transient behavior of the charge

pump does impact the quantization noise shaping properties of the phase-locked loop.

To minimize the phase noise contributed by the charge pump current sources to the

overall PLL output, it is desirable to minimize their on time. Similarly, reducing the

time the charge pump is active allows to relax the timing requirements of the ADC

and the digital loop controller.

Operating the current sources for a small amount of time though requires fast

settling of the current sources, otherwise the signal dependency of the net current

83

magnitude will hinter the charge pump linearity. A modified cascode current steering

charge pump was implemented in this prototype [14]. The charge pump current

sources are shown in Figure 23, and a replica of this architecture, in which the posi-

tive current source is always off, is used to implement the offset current source.

This circuit permits very fast settling with negligible turn-on or turn-off over-

shoot. To minimize the current sources switching time, the parasitic capacitance at the

drains of Mn1 and Mp1, and the voltage swing at such nodes both need to be kept at a

minimum. However, the use of small feature devices and the drain low voltage swing

adversely affects both the on and off output impedance of the cascode current

sources, which in turn increases the charge pump current dependency on its output

voltage.

Extensive simulations show that signal dependency due to a low charge pump

output impedance alters the ΔΣ FDC quantization noise spectrum and negatively af-

fects the PLL performance by increasing its output spectrum in-band noise and spuri-

ous tone content.

In order to keep the output impedance to an acceptable level when the current

sources are on, the channel lengths of Mn1 and Mp1 have been set to several multiples

of the process minimum feature, while the intrinsic gain of Mn2 and Mp2 has been

maximized, given the expected output voltage swing. To boost the charge pump out-

put impedance when all current sources are off, a switch is inserted between the

charge pump output and the integrating capacitor. The switch uses two sets of dummy

devices to minimize charge injection at turn off [24]. Its closed or open state is con-

84

trolled by the PFD in such a way that the switch closes right before either of the

charge pump current sources turn on, and opens right after all of the current sources

are turned off.

B. Analog to Digital Converter

The 10-level ADC of this prototype was implemented as a flash ADC. Figure

24 shows the comparator architecture, which consists of a low-gain pre-amplifier fol-

lowed by a dynamic comparator. The cross-coupled transistors Mn3 and Mn4 allow to

increase the pre-amplifier gain while maintaining a tight control on it, and a suffi-

ciently low impedance load for the differential pair. The low impedance load, to-

gether with two sets of switches, prevents the kick-back from the dynamic compara-

tor from injecting charge into the ADC input capacitor. In order to meet the offset re-

quirements for the comparators, the length of all transistors in the pre-amplifier is at

least three times the technology minimum feature. A resistor ladder and an error-

correcting encode [54] complete the ADC.

C. Divider

The chosen divider topology, shown in Figure 25, is a modified version of the

architecture presented in [55]. The structure consists of a chain of seven programma-

ble divide-by-2/3 cells connected like a ripple counter. If the divider modulus is

greater than 127, the NAND gate between cell 5 and cell 6 can be replaced by a wire

connecting its negated input to its output. In such a case, the programmable divider

operates as follows: once in a division period, the last cell in the chain generates the

85

signal mod6. This signal then propagates “down” the chain, i.e. from cell 6 to cell 0,

being re-clocked by each cell along the way on the rising edge of its input clock. An

active mod6 signal enables the ith cell to divide by 3 once in a division cycle, pro-

vided that its programming input pi is set to 1. Division by 3 adds one extra period of

each cell’s input signal to the period of the output signal divout. Hence, a chain of

seven divide-by-2/3 cells provides an output signal with period:

()

7 6
6 1 0

7 6
6 1 0

2 2 ... 2

2 2 ... 2
out in in in in

out in

div div div div div

div div

T T T p T p T p

T p p p T

= + ⋅ + + ⋅ + ⋅

= + + + +
 (140)

The purpose of the additional logic between cell 5 and cell 6 is to allow a di-

vider modulus lower than 128, necessary to tune the PLL to the lower output fre-

quency range. This is accomplished by setting mod6 high whenever the divider

modulus is less than 128, thus effectively eliminating the influence of cell 6 from the

period of the divider output and shorting the divider chain length to six cells [55].

As the capability of achieving a divisor ratio greater than 127 has to be re-

tained, the divider chain should not be shortened to a length less than 7 when p6 = 0

but p7 = 1, hence the NAND gate [55]. The frequency of the output signal is:

 7 6
7 6 1 02 2 ... 2

in

out

div
div

f
f

p p p p
=

+ + + +
 (141)

while the allowed division range is:

 6 7 6 8
7 6 1 02 2 2 ... 2 2 1p p p p≤ + + + + ≤ − (142)

Each divide-by-2/3 cell is implemented following [55] as shown in Figure 26.

For the divider to work properly, the following necessary condition needs to be satis-

86

fied for the ith divider cell:

1

3
2i i i iiclk Q clk Q NAND clkclk Q Tτ τ τ τ

+→ →→
+ + + < (143)

Sufficient conditions for correct operation of the ith divider cell are instead:

1i iiclk Q clkclk Q Tτ τ

+→ →
+ < (144)

 1
2i i iclk Q NAND clkTτ τ→ + < (145)

For the desired PLL output frequency range these conditions are easily met using

CMOS logic in the available 65 nm technology.

Correct operation of the divider in the contest of the FDC-PLL requires the

divider modulus loaded during nth divider period, and set by the output of the 2−z−1

block, to affect the duration of the nth divider period itself. This requirement cannot

be met using one of the modi signals as divider output as in [55].

However, the loading of a new modulus during nth divider period will affect

the duration of the nth divider period itself, provided that clk7 or clk6 are used as di-

vider output signals when p7 = 1 or 0 respectively, and that the new divider modulus

is loaded after all of the (n−1)th modi falling edges have occurred, and before ∃ i, j

such that nth modi falling edge occurs while modj is high or has yet to become high

during the current division cycle.

In order to satisfy the last condition, mod5 is used to signal the 2−z−1 block

that the divider is ready to accept a new modulus. Notice that the falling edge of the

divider output might have been used for this purpose as well. The signal mod5 was

here preferred as in the worst case the falling edge of the divider output occurs 32 in-

87

put cycles after its rising edge, which was deemed too close to the divider rising edge

for one of the multiple configurations the prototype was designed to work in, in

which a significant amount of time is given to both the charge pump and ADC to set-

tle.

The divider output is instead set to be clk7 or clk6 depending on whether p7 = 1

or 0 respectively, by a multiplexer. The status of p7 is sampled by mod4 and used as

select signal for such multiplexer. A representative timing diagram for the divider is

shown in Figure 27.

III. QUANTIZATION NOISE CANCELLATION

In Chapter 1, the contribution of the ADC quantization noise eADC[n] to the to-

tal FDC-PLL phase noise has been quantified in equation (39). If the conditions out-

lined in Chapter 1 are satisfied so that eADC[n] can be assumed to be asymptotically

white and uniformly distributed, the phase-locked loop suppresses the spectral com-

ponents of eADC[n] well within the PLL bandwidth. Outside the PLL bandwidth,

eADC[n] can become the dominant phase noise source, unless it is heavily filtered by

the LLPF(z) portion of the loop filter.

As the phase-locked loop bandwidth is widen, the need to suppress out-of-

band quantization noise increases, which in turn increases the filtering requirements

of the first-order IIR filters. Unfortunately though, reducing the bandwidth of such

filters to improve quantization noise suppression significantly impacts the stability of

the synthesizer. The use of IIR or FIR filters with steeper roll-off introduces similar

88

concerns due to their phase response. Hence, a fundamental tradeoff exists between

FDC-PLL bandwidth and suppression of FDC quantization noise.

A. General Quantization Noise Cancelling Architecture

A wide PLL bandwidth is however necessary to fight the corruption of the

DCO output by nearby circuitry, and in applications that require direct synthesis of

phase modulated signals by in-loop modulation. In such scenarios, the degradation in

performance associated with a lower suppression of the phase noise due to eADC[n]

might not be acceptable. Moreover, the analysis presented in [27] and relied upon in

Chapter 1 to show that eADC[n] is asymptotically white and uniformly distributed, as-

sumes that the feedback path of the ΔΣ FDC does not affect the statistical properties

of eADC[n]. The phase-locked loop however introduces an additional feedback from

the ΔΣ FDC output y[n] to its input x[n] in Figure 3. Extensive simulations suggest

that this path does alter the statistical properties of eADC[n] as the amount of suppres-

sion of quantization noise by the loop is decreased, i.e. as the PLL bandwidth is wid-

ened, leading to the presence of spurious tones at multiples of αfref in the synthesizer

output spectrum. For the reasons outlined above, further suppression of the quantiza-

tion noise than what achievable with the LLPF(z) portion of the loop filter implementa-

tion given in Chapter 1 is desirable.

The problem of reducing the phase noise that would otherwise arise due to the

ADC quantization noise can be addressed by using an NADC-level ADC, for NADC > 5,

to obtain an estimate, êADC[n], of eADC[n]. The phase-to-frequency accumulator output

89

p[n], as given by equation (14), is available in digital form. Therefore the sequence:

 ()1[] [] [1]ADC ADCe n e n e nΔΣ− = − − − , (146)

can be computed and added to p[n] to from the new input to the digital loop filter:

 () () () 1 1

[]
[] [] []p

PLL n ref n

e n
p n N t e n e nθ τ α θ ΔΣ ΔΣ= − + + + + −

Δ
 (147)

The functional diagram of the general quantization noise cancelling imple-

mentation described is shown in Figure 28. To the extent that êADC[n] is a faithful rep-

resentation of eADC[n], the contribution of eADC[n] to the PSD of θPLL(t) can be can-

celled. Hence, increasing the precision of the analog-to-digital converter allows to

suppress to a greater extent the ADC quantization noise impact on the synthesizer

phase noise. Consequently, this technique allows to decouple the PLL bandwidth

from the eADC[n] induced phase noise reduction requirements.

In Figure 29 the contribution of the ADC quantization noise to the output of

the PLL is shown before and after the quantization noise cancelling algorithm is ap-

plied. If eADC[n] were the dominant noise source out of band, the PLL bandwidth

could be increased by a factor of ten with respect to the design example of Chapter 1

by using an ADC with 80 levels. A 10-level ADC will instead allow to reduce the

contribution of eADC[n] to the synthesizer phase noise by 6 dB.

B. Practical Quantization Noise Cancelling Algorithm Implementation

The quantization noise cancelling technique can be efficiently implemented

by starting with a 5 level ADC that implements a mid-tread quantizer as stated in

Chapter 1. If then every level is bisected, the resulting quantization characteristic will

90

be that of a 10-level mid-rise quantizer. Repeating the bisecting procedure on this

mid-rise quantizer doubles again the number of levels while preserving the mid-rise

characteristic.

Bisecting the initial mid-treat quantizer characteristic Q times, the total num-

ber of levels becomes NADC = 5·2Q. If the resulting levels are assigned a binary un-

signed or two’s complement representation, the ()2log ADCN⎡ ⎤⎢ ⎥ −3 LSBs of such rep-

resentation provide a biased estimate −êADC[n] of the opposite of the ADC quantiza-

tion error eADC[n] equal to:

 1

2 1[] [] []
2

Q

ADC ADC FADCQe n e n e n+

−
− = − + + (148)

where eFADC[n] is the quantization error of the NADC-level ADC. Notice that the bias

of −êADC[n] is irrelevant for the purpose of the quantization noise algorithm as per

equation (146) êΔΣ[n] is zero-mean regardless of the average value of −êADC[n]

The quantization noise cancelling algorithm was implemented in this proto-

type as shown in Figure 21. The digital loop controller logic was designed to imple-

ment the digital portion of the algorithm for a value of Q = 2, i.e. for a 20-level ADC.

During the design of the ADC comparator though, the power and area consumption

required to achieve the necessary comparator offset was deemed excessive. Hence a

10-level ADC was chosen instead. A representative plot of the measured effect of the

quantization noise algorithm on the synthesizer output spectrum is shown in Figure

30.

91

IV. DIGITAL LOOP CONTROLLER

The digital loop controller consists of three main parts, as shown in Figure 31:

the phase-to-frequency accumulator and quantization noise cancelling unit, the digital

loop filter and the multiply and requantizer stage. Every part operates in saturation

arithmetic, as a two’s complement roll-over will cause a phase-locked loop polarity

inversion.

The input to the digital loop controller consists of the ADC output and the

fractional divisor modulus α. In this prototype, the ADC output sequence ˆ[]y n = y[n]

− êADC[n] is represented by a 4-bit two’s complement binary number. Its 3 MSBs are

interpreted as the ADC output integer part y[n], while the LSB represent its fractional

part −êADC[n]. The fractional part of the divisor modulus, α is instead represented by a

27-bit number, of which the first bit is interpreted as the sign of α (1 meaning a nega-

tive α) and the remaining 26-bit are interpreted as the fractional part of α. The sum of

the ADC output integer part and α is accumulated, while the ADC output fractional

part is passed through a 1−z−1 filter and the result is added to the accumulator output

to implement the quantization noise cancelling algorithm described in Section III.

The output of the accumulator and quantization noise cancelling stage is a 32-bit

two’s complement number, of which 6 MSBs are interpreted as the number integer

part. Only a 7-bit accumulator is required to perform the addition at the output of the

accumulator, necessary for the quantization noise cancelling algorithm

The digital loop filter consists of four single-pole infinite impulse response

92

(IIR) filters followed by a proportional-integral (PI) stage. With the notation used in

Chapter 1, assuming none of the internal nodes saturates, the cascade of IIR filters

implements the transfer function in (13) scaled by a factor of 1/768, while the PI

stage implements the transfer function in equation (12), scaled by a factor of 1/768.

The loop filter coefficients are restricted to powers of two scaled by 768, a

factor roughly equal to fref/KDCO. Doing so allows to implement all the divisions in-

side the IIR and PI filters as right shifts. As a result, no multipliers and dividers are

used in the digital loop controller. All stages operate on a 32-bit input to generate a

32-bit output. The internal signals are also represented using 32-bit.

Finally, the multiply and requantizer stage multiplies the 32-bit digital loop

filter output by 768 and requantizes the results to 14-bit. The multiplication is per-

formed by adding the results of two left-shift operations so no multipliers are used

here either. A 31-bit LFSR, not shown, provides the set of 18 pseudo-random bits

used to perform the requantization step, in order to avoid truncation artifacts.

V. MULTI-RATE QUANTIZING DEM ENCODER

HARDWARE EFFICIENT IMPLEMENTATION

The multi-rate quantizing DEM encoder presented in Chapter 2 represents a

natural choice when deciding which type of dynamic element matching encoder to

adopt in order to prevent mismatches among DCO varactor units from introducing

non-linear distortion artifacts in the synthesizer output spectrum. By translating the

varactor mismatches into highpass shaped frequency noise for the oscillator, the

93

multi-rate quantizing DEM encoder prevents them from introducing spurious tones at

the PLL output, while minimally affecting the synthesizer phase noise.

As only the digital ΔΣ modulator and local DEM encoder are operated at a

high rate, while most of the logic is operated at the reference oscillator frequency, the

multi-rate quantizing DEM encoder provides a significant power reduction over a

conventional oversampled DEM encoder of the type shown in Figure 11. Moreover,

most varactor elements are operated at the reference frequency so the switching noise

is lower than what generated using an conventional oversampled DEM encoder.

Finally, when the PLL is locked, the input to the DEM encoder has a noise-

like structure, so no strong signal replicas at multiples of the multi-rate DEM encoder

sample rate are present, and the replicas are filtered by the natural frequency-to-phase

integration performed by the DCO.

However, due to the presence of multi-bit adders, the power consumption, re-

quired area and propagation delay of both segmenting and non-segmenting switching

blocks in Figure 15 increase as the layer index k increases. Switching blocks in each

layer quantize their input sequences by 1-bit so the power consumption, required area

and latency of the whole multi-rate quantizing DEM encoder increases with the num-

ber of bits used to represent the input c[n]. Furthermore, the implementation details of

each switching block are specific to the layer the switching block belongs to.

In the following paragraphs, implementations for non-segmenting and seg-

menting switching blocks whose power and area requirements as well as propagation

delay are independent on the number of bits of their input sequences will be given.

94

Building upon these results, the MRQ-DEM encoder in Figure 15 will be shown to be

implementable without the need for any adders except for the ones present in the ΔΣ

modulator of Figure 17.

A. Adder-free Non-segmenting Switching Blocks

An hardware efficient implementation of non-segmenting switching blocks

Sk,r for k = 2, 3, r = 1, 2, and k = 1, r = 9, …, 15, was presented in [56] and is shown

with notation compliant to [17] in Figure 32a and Figure 32c. By using an alternative

coding convention for the input and output sequences of each switching block, the

adders implied by equation (124) can be eliminated. The coding scheme is called ex-

tra-LSB encoding [57, 58] and it represents each sequence ck,r[n] with k+1 bits de-

noted ()
, []i

k rc n , for i = 0, …, k. Each bit can have a value of one or zero and the nu-

merical value associated with ck,r[n] is:

 1 () (0)
, , ,

1
[] 2 [] []

k
i i

k r k r k r
i

c n c n c n−

=

= +∑ (149)

From equations (124), (126) and (128), non-segmenting switching blocks add

or subtract a 1 from their input only when their input is odd. For odd inputs, only one

between (0)
, []k rc n and (1)

, []k rc n can be set at 1, hence the extra-LSB encoding allows

each Sk,r switching block to perform the additions and subtractions in (124) without

affecting the k−1 MSBs of ck,r[n], which can be simply routed to the next block as in

Figure 32a.

The sequence generators implement equations (126) and (128), therefore the

95

Sk,r blocks perform spectral shaping of the errors due to mismatch among 1-bit DACs

[56].

B. Adder-free Local DEM Encoder

A similar topology is used for non-segmenting switching blocks Sk,r for k = 1,

2, r = 1, 2, in the local DEM encoder of Figure 15. As no spectral shaping of 1-bit

DAC mismatches is performed by these switching blocks, their implementation, in

Figure 33a, is relatively simpler than what shown in Figure 32a.

The final architecture for the local DEM encoder is shown in Figure 33b. The

additional logic shown at the input of the encoder is used to map the ΔΣ modulator

output sequence xΔΣ[m] into the non-negative sequence cΔΣ[m] for values of xΔΣ[m]

between −2 and +2.

C. Adder-free Segmenting Switching Blocks

For segmenting switching blocks Sk,1 for k = 4, …, 14, the bottom output is a

3-level sequence c15−k,1[n] restricted to the set of values: {0, 1, 2} according to equa-

tions (123), (126) and (127). The bottom output can then be represented by a 2-bit

sequence in which each bit is unity weighted so it can be coded according to the ex-

tra-LSB encoding scheme presented above and interpreted as:

 (0) (1)
15 ,1 ,1 15 ,1 15 ,1[] 1 [] [] []k k k kc n s n c n c n− − −= + = + (150)

Whenever ck,1[n] is even, (150) is either 0 or 2. If c15−k,1[n] = 0, the (0)
15 ,1[]kc n− and

(1)
15 ,1[]kc n− are both 0. If c15−k,1[n] = 2, (0)

15 ,1[]kc n− and (1)
15 ,1[]kc n− are both set to 1. When-

96

ever ck,1[n] is odd, c15−k,1[n] is 1 and the bottom output bits (0)
15 ,1[]kc n− and (1)

15 ,1[]kc n− are

set to 1 and 0 respectively.

The extra-LSB encoding used for non-segmenting switching blocks can’t in-

stead be used for the input ck,1[n] and top output ck-1,1[n] sequences. A slightly differ-

ent encoding scheme called negative-extra-LSB encoding has been devised, in which

the negative-extra-LSB encoding of ck,1[n] consists of k+1 bits that are denoted

()
,1[]i

kc n (i = 1,…, k) and ()
,1 []kc n− , each of which take on a value of one or zero. The

numerical value of ck,1[n] interpreted as:

 1 () ()
,1 ,1 ,1

1

[] 2 [] []
k

i i
k k k

i

c n c n c n− −

=

= −∑ (151)

so that the extra bit ()
,1 []kc n− has an effective weight of −1. A conventional unsigned

binary encoded number can be converted to a negative-extra-bit encoded number by

appending an extra 0th bit and setting it low.

Whenever ck,1[n] is odd, sk,1[n] = 0 and the top output has to be set to:

 ,1 ,1 ,1 ,1[] 1 [] [] []
2 2 2 2

k k k kc n c n c n c n− ⎧ ⎫ ⎢ ⎥
= − =⎨ ⎬ ⎢ ⎥

⎩ ⎭ ⎣ ⎦
 (152)

which is implemented by right shifting by 1 bit the k−1 MSBs of ck,1[n] and setting

()
1,1[]kc n−

− = 0.

Whenever ck,1[n] is even, its (1)
,1[]kc n bit is zero. If sk,1[n] = −1, the top output

is:

 () ,1
,1 ,1

[]1 [] 1 []
2 2

k
k k

c n
c n s n− − = (153)

97

which is simply implemented by right shifting by 1 bit the k−1 MSBs of ck,1[n] and

setting ()
1,1[]kc n−

− = 0. If instead sk,1[n] = +1, ck-1,1[n] has to be set to:

 () ,1 ,1
,1 ,1

[] 2 []1 [] 1 [] 1
2 2 2

k k
k k

c n c n
c n s n

−
− − = = − (154)

which is implemented by right shifting by 1 bit the k−1 MSBs of ck,1[n] and setting

()
1,1[]kc n−

− = 1. The RTL view for adder-free segmenting switching blocks is shown in

Figure 32b and Figure 32c.

D. Adder-free Multi-rate Quantizing DEM Encoder

Switching blocks S1,r for r = 1, …, 15, Sk,r for k = 2, 3, r = 1, 2, Sk,1 for k = 4,

…, 14 in the modified DEM encoder of Figure 15, and Sk,r for k = 1, 2, r = 1, 2, in the

local DEM encoder of Figure 33b can be implemented as shown in Figure 32a,

Figure 32b, Figure 32c and Figure 33a to eliminate the need for adders and therefore

the dependence between the hardware complexity and the number of bits used to rep-

resent the input sequence. However, the negative-extra-LSB representation of the top

output of S4,1 still needs to be mapped to the extra-LSB representation adopted for the

input of switching block S3,1. Moreover, the adders and scaling factors interposed be-

tween the bottom outputs of switching blocks Sk,1 for k = 7, …, 14 and the ΔΣ modu-

lator input have to be removed as well.

Assume a 14-bit two’s complement representation for the input sequence x[n],

where the bits are denoted x(i)[n] (i = 1,…, 14), so that its numerical value is inter-

preted to be:

98

13

1 () 13 (14)

1

[] 2 [] 2 []i i

i

x n x n x n−

=

⎛ ⎞= Δ −⎜ ⎟
⎝ ⎠
∑ (155)

The sequence x[n] has to be mapped to the integer sequence c[n] of Figure 15, whose

range is restricted to the set specified in (122). From (155), x[n] can take on any value

in the set {−213Δ, …, (213−1)Δ} and therefore it can be mapped to a non-negative in-

teger sequence c[n] within the valid range of (122) by adding an offset of either

213+2047 or 213+2048 to its two’s complement representation x[n]/Δ.

An offset of 213 can be simply added by inverting the MSB of x[n]/Δ, x(14)[n].

Accordingly we define a new sequence cc[n] = x[n]/Δ + 213, whose encoding consists

of 14-bit denoted ()[]i
cc n (i = 1, …, 14) assigned as:

(14) (14)

() ()

[] 1 []

[] [] for 1, 2,...,13
c

i i
c

c n x n

c n x n i

= −

= =
 (156)

and interpreted as:

14

13 1 ()

1

[][] 2 2 []i i
c c

i

x nc n c n−

=

= + =
Δ ∑ (157)

By recursively applying equation (123) for k = 4, 5, …,14 it can be shown that

an offset of 2048 added to the MRQ-DEM encoder input sequence c[n] won’t affect

the operation of switching blocks Sk,1 for k = 4, 5, …,14. However, the offset will af-

fect the operation of S3,1 by adding a one to its input sequence. Therefore an offset of

2048 added to the encoder input sequence c[n] is equivalent to direct addition of a

one at the input of switching block S3,1. By design, the input to S3,1 plus one is equal

to the top output of S4,1 plus one. In negative-extra-LSB notation, this is:

99

3

1 () ()
3,1 3,1 3,1

1
[] 1 2 [] [] 1i i

i
c n c n c n− −

=

+ = − +∑ (158)

The sequence specified by (158) can be represented in extra-LSB notation as:

3

1 () (0)
3,1 3,1 3,1

1

[] 1 2 [] []i i

i

c n c n c n−

=

+ = +∑ (159)

by assigning:

 (0) ()
3,1 3,1[] 1 []c n c n−= − (160)

The implementation of (159) and (160) consists simply in assigning as input to S3,1

the 4-bit sequence composed by bits ()
3,1[]ic n for i = 0, …, 3, where (3)

3,1 []c n , (2)
3,1 []c n ,

(1)
3,1[]c n are provided as top output by switching block S4,1, and (0)

3,1 []c n is obtained by

inverting ()
3,1 []c n− as generated by S4,1.

The sequence of operations outlined so far allows to map the multi-bit MRQ-

DEM DAC input sequence x[n] into a sequence c[n] = cc[n]+2048 = x[n]/Δ+213+2048

which takes on values within the range of equation (122). The mapping is performed

without requiring any extra hardware except for two inverters.

Finally, the adders and scaling factors at the input of the second-order digital

ΔΣ modulator are removed. Recursively applying (123) for k = 7, 8, …, 14, the input

sequence to switching block S6,1 can be written as:

14

,1
6,1 8 (14 8)

7

1 [][][]
2 2

k
k

k

s nc nc n − −
=

+
= − ∑ (161)

From equation (129):

100

 ()
14 14

,114 8
,1 (14 8)

7 7

14
,18

(14 8) 8
7

[]
[] 255

1 []
2 1 [] 2

2

1 [] []2 []
2 2

f
f

kk
k k

k k

k
k

k

x n
c n

s n
s n

s n c n c n

−
− −

= =

− −
=

= +
Δ

+
= + =

+⎡ ⎤
= − +⎢ ⎥

⎣ ⎦

∑ ∑

∑

 (162)

which can be rewritten using equation (161) as:

 8
6,1[] [] 2 []fc n c n c n= − (163)

From (151), the input sequence to switching block S6,1 is represented in negative-

extra-LSB notation as:

6

1 () ()
6,1 6,1 6,1

1
[] 2 [] []i i

i
c n c n c n− −

=

= −∑ (164)

Furthermore, bits ()
6,1[]ic n (i = 1, …, 6) are equal to the 6 MSBs of cc[n], hence:

6 8

1 () 1 ()
6,1 8

1 1

12 [] [] 2 []
2

i i i i
c

i i

c n c n c n− −

= =

⎡ ⎤= −⎢ ⎥⎣ ⎦
∑ ∑ (165)

Plugging equation (165) into (164) and the result into (163) leads to:

8

8 () 1 ()
6,1

1
[] 2 [] 2 []i i

f c
i

c n c n c n− −

=

= + ∑ (166)

The input to the second-order digital ΔΣ modulator in Figure 15 is by equation (162):

xf[n] = Δ(cf[n] − 255). In this adder-free implementation, it will instead be set to:

 () ()
8

8 8 () 1 ()
6,1

1

[] [] 2 2 [] 1 2 []i i
f f c

i

x n c n c n c n− −

=

⎡ ⎤= Δ − = Δ − +⎢ ⎥⎣ ⎦
∑ (167)

The additional offset of −Δ is added in order to simplify the logic needed to generate

the ΔΣ modulator input sequence, as it will be evident in the following paragraph.

101

The second term in parenthesis in equation (167) is such that:

8

1 ()

1
0 2 [] 255i i

i
c n−

=

≤ ≤∑ (168)

while the first term in parenthesis is either 0 or −256. Hence, using a 9-bit two’s

complement representation for xf[n]/Δ where the bits are denoted ()[]i
fx n (i = 1,…, 9),

equation (168) is satisfied by setting:

(9) ()

6,1

() ()

[] [] 1

[] [] for 1, 2,...,8
f

i i
f c

x n c n

x n c n i

−= −

= =
 (169)

which can be implemented by simply routing the 8 LSBs of cc[n] to form the 8 LSBs

of xf[n]/Δ, inverting ()
6,1 []c n− and appending it as MSB of xf[n]/Δ. Notice that the pos-

sibility of using the inverted version of ()
6,1 []c n− as MSB of xf[n]/Δ comes from using

an offset of −28 in equation (167), instead of −255 as required by equations (129) and

(162).

To summarize, it is possible to remove all adders from the multi-rate quantiz-

ing DEM encoder of Figure 15, except the ones used to implement the digital ΔΣ

modulator, by:

• implementing the local DEM encoder in Figure 15 as shown in Figure 33b,

• replacing all segmenting and non-segmenting switching blocks in Figure 15 and

Figure 33b with their adder-free versions in Figure 32a, Figure 32b, Figure 32c

and Figure 33a,

• using as input to S14,1 the sequence cc[n], obtained by tying ()
14,1[]c n− to 0, routing

102

bits 1 through 13 of x[n]/Δ to be bits 1 through 13 of cc[n], and assigning the in-

verted version of (14)[]x n to be (14)[]cc n ,

• assigning the inverted version of ()
4,1 []c n− to (0)

3,1 []c n ,

• routing bits 1 through 8 of cc[n], i.e. bits 1 through 8 of x[n]/Δ, to be bits 1

through 8 of xf[n]/Δ and assign the inverted version of ()
6,1 []c n− to (9)[]fx n .

The final adder-free MRQ-DEM encoder is shown in Figure 34. Observe that,

although to be consistent with previous figures and notation the inputs to each switch-

ing blocks consist of multiple bits, the digital logic of each switching block operates

only on two bits, so all switching blocks of the same type share the same implementa-

tion and routing complexity regardless of the layer they belong to.

E. MRQ-DEM ΔΣ Modulator Timing

In Chapter 1, the input sequence to the digitally controlled oscillator is applied

to the varactor bank on a rising edge of the reference oscillator signal. Unfortunately,

this choice would require the generation of a clock signal synchronous with the refer-

ence oscillator output, yet of frequency several times that of the reference, in order to

be able to clock the second-order ΔΣ modulator in the MRQ-DEM encoder of Figure

15.

A practical alternative is instead to use a P-times divided down version of the

synthesizer output as clock for the ΔΣ modulator [6]. Increasing the ΔΣ modulator

clock frequency trades power consumption for higher frequency resolution and lower

phase-noise at the PLL output. A major drawback of this approach though is that the

103

digital ΔΣ modulator clock phase is free to rotate with respect to the phase of the ref-

erence. Hence, the input to the ΔΣ modulator needs to be re-sampled across different

frequency domains introducing the potential for metastability [6].

In the prototype here presented, a different approach was taken to avoid the

metastability issue. The modified DEM encoder outputs are made available on the

rising edge of the reference, and the encoder itself is clocked once per reference pe-

riod. The sequence xf[n] is then re-sampled on the rising edge of the divider output

and provided as input to the ΔΣ modulator. The presence of an offset current in the

PLL architecture ensures that, once the PLL is locked, the nth divider rising edge al-

ways occurs sufficiently after the nth reference edge. Hence, the input to the second-

order ΔΣ modulator is always sampled correctly without potential for metastability.

In order to avoid metastability inside the ΔΣ modulator itself, the clock signal

for its feedback path is derived from the output of the divider divide-by-2/3 cells. Re-

stricting P to be a power of 2, and using one of the divider’s internal signals,
2log Pclk ,

the number of delta-sigma modulator clock periods per divider period is constant,

removing any risk of metastability. The clock signal used for the ΔΣ modulator is

dubbed clkP.

The output of the local DEM encoder is then applied to the DCO on the next

rising edge of clkP. The modified DEM encoder outputs are instead applied to the

DCO on the divider rising edge delayed by one cycle of clkP. The corresponding

clock signal is named vdivP and its purpose is to prevent a systematic timing mismatch

between the time the nth output word of the modified DEM encoder is applied to the

104

oscillator and time the local DEM encoder output representing the first sample gener-

ated by the ΔΣ modulator with input xf[n] is applied to the oscillator. Such a mismatch

would be translated into shaped white frequency noise by the MRQ-DEM encoder,

but it would still unnecessarily degrade the synthesizer phase noise performance.

F. Period Distortion Compensating ΔΣ Modulator

Using the output of one of the divider’s divide-by-2/3 cells as clock for the

digital ΔΣ modulator in the MRQ-DEM encoder eliminates the risk of metastability

as mentioned above. However, if the during the nth divider period, the divider

modulus N−v[n], is not an integer multiple of P, the duration of one of the clkP peri-

ods is extended by up to P−1 DCO periods. As a result, due to this clock period

stretching, once per divider period, the synthesizer frequency variation induced by

one of the ΔΣ modulator output samples will be effectively multiplied by

()[] 1 [] /n N v n Pγ = + − .

The ΔΣ modulator output sequence is equal to its input plus quantization

noise. The input signal xf[n], being a constant over each divider period, doesn’t un-

dergo any distortion due to the period stretching: it’s corresponding average fre-

quency variation over a divider period is the same regardless of the duration of each

ΔΣ clock period.

On the other hand, the ΔΣ modulator quantization noise eΔΣ[m] and the input

dither dΔΣ[m] are sequences of non-constant values over the nth divider period. Only

the frequency variation induced by one these values per each sequence is effectively

105

multiplied by γ[n]. As a result of this multiplication, some of the desirable properties

of the quantization noise are lost. For example, there is no guarantee that the quanti-

zation noise power spectral density has a double zero at zero frequency, as the sum of

its running sum is not bounded anymore.

In order to maintain the desirable noise shaping characteristic of the digital ΔΣ

modulator, the period distortion compensating ΔΣ modulator of Figure 35 can be im-

plemented in place of the one shown in Figure 17. Here, in each divider period, a

multiplier at the input of the 2z−1−z−2 feedback filter multiplies the quantization error

sample generated during the stretched ΔΣ clock period by γ[n]. In doing so, it ensures

that the ΔΣ modulator keeps track of the quantization error as it appears in terms of

frequency variation at the output of the PLL. A division of 1/γ[n] is then performed at

the output of the feedback filters to keep the ΔΣ modulator signal and noise transfer

functions constant over all clock cycles.

As a result of the multiplication by γ[n], the number of quantization levels

necessary to prevent the modulator from overloading at any given time is increased

from five to seven. In order to represent seven thermometer coded output values, the

number of varactor units of weight 256ΔF driven by the local DEM encoder needs to

be six, instead of four. However, using a non-power of two number of varactors in-

creases the complexity of the local DEM encoder, hence it might be preferable to use

a total number of eight varactors.

The period compensating ΔΣ modulator with P = 16 allows to reduce the syn-

thesizer output phase noise by 8.6 dB at an offset of 10 MHz, in absence of DCO

106

noise. Once the DCO phase noise is taken into account, the period compensating ΔΣ

modulator allows to reduce the PLL phase noise at an offset frequency of 10 MHz

from the carrier by about 3 dB. For smaller values of P, the performance improve-

ment is more modest. The reason is that in this case the relative amount of distortion

per divider period is less, hence the noise due to ΔΣ period stretching is lower than

the noise introduced by the oscillator itself. The hardware overhead required to im-

plement the period compensating ΔΣ modulator was deemed excessive and removed

from the prototype described in this chapter before fabrication. The ΔΣ modulator of

Figure 17 was used instead, in the form shown in Figure 36. However, for small ra-

tios of N/P, or better performing oscillators, the advantage of using the ΔΣ modulator

in Figure 35 is significant.

VI. DIGITALLY CONTROLLED OSCILLATOR

The digitally controlled oscillator implemented in this prototype is built start-

ing from a standard LC oscillator. The final design is similar to what presented in [7],

except for the capacitor banks, which are modified with respect to [7] to reduce the

supply sensitivity of nMOS based varactors found in a previous prototype of this

DCO. A diagram of the oscillator, together with the implementation of the coarse, in-

termediate and fine varactor banks is shown in Figure 37, Figure 38 and Figure 39

respectively.

A single switch topology was chosen to maximize the oscillator output ampli-

tude, in order to minimize its phase noise [59].

107

A custom three-turn center-tapped inductor was originally designed to have a

differential inductance of 1.856 nH with a differential quality factor Q of 17 at 3.6

GHz. The custom inductor employs the techonology aluminum redistribution layer

stacked with metal 7 for the main spiral, with underpass in metal 6. Due to the neces-

sity to account for the self-inductance of the inductor feeding lines, after post-layout

simulation, the custom inductor was replaced with a two-turn 1.5 nH inductor of Q =

16.5 available in the design kit library. A patterned ground ring is used to attenuate

substrate losses.

The inductance tunes with three banks of capacitors to provide an output fre-

quency range between 3.1 GHz and 4 GHz, which was found suitable to cover the

range of GSM bands targeted. The three capacitor banks are designed to provide

coarse, intermediate and fine frequency tuning respectively. Due to unavailability of

MIM capacitors in the process used, all capacitor banks employ interdigitized MOM

capacitors.

The coarse bank consists of seven binary-weighted varactors, each of which

has the architecture shown in Figure 37. A set of nMOS switches is programmed via

serial port to switch in and out of the tank each varactor unit. The input coming from

the serial port is re-buffered on the DCO supply to avoid unintended frequency

modulation of the oscillator. Two R = 40 kΩ high resistivity polysilicon resistors are

used to maintain the switch voltages so that none of the nMOSes is forward biased

under any condition, a situation that would cause additional loading of the LC tank

with consequent degradation of the oscillator phase noise. The large value of R helps

108

reducing the impact of the buffers non-linear output capacitance. The unit frequency

step corresponding to a variation of 1 LSB of the coarse tuning bank input word is

designed to be about ΔC = 8 MHz.

The intermediate bank consists of six binary-weighted varactors, each of

which has the architecture shown in Figure 38. The intermediate bank topology is

similar to the one used for the coarse varactor unit, except for one extra capacitor

placed across the nMOS switches in order to reduce the frequency step achievable

with the available MOM capacitors. The unit frequency step corresponding to a varia-

tion of 1-LSB of the intermediate tuning bank input word is designed to be ΔI = 400

kHz, so that the intermediate bank full range is approximately equal to three times the

coarse bank minimum frequency step.

The fine tuning bank is shown in Figure 39. The minimum fine bank varactor

frequency step is set to be 256ΔF = 34 kHz in order to meet the stringent phase noise

requirements of the GSM standard. The bank consists of eighteen varactor units, six

of size 256ΔF, two of size 512ΔF, two of size 1024ΔF, and eight of size 2048ΔF. The

input to the fine varactor bank is provided by the MRQ-DEM encoder as described in

Section V. Hence the input to four of the 256ΔF sized varactors is updated at a rate of

fDCO/P, while the input to the remaining fourteen varactors is updated once per di-

vider period. The fine bank topology consists of a capacitor bridge which can be bal-

anced by an nMOS switch. Each arm of the bridge has two capacitor whose capaci-

tance differs by ΔFC = 0.7 fF, the minimum amount allowed in the technology used. A

set of nMOSes whose sources and drains are shorted is driven by a signal of opposite

109

polarity with respect to the varactor input signal in order to prevent the main switch

charge injection from altering the amount of charge in the MOM capacitors. This ar-

chitecture provides the desired frequency step of 34 kHz while being very insensitive

to supply variations. Each varactor unit switch input is set by a fully differential D

flip-flop, which consists of two copies of the flip-flop presented in [60]. Both the

clocks and the inputs to the flip-flops are provided differentially to minimize the

amount of current coming from the digital supply and returning through the dedicated

fine bank varactor supply.

In order to withstand a peak-to-peak voltage swing of almost twice the supply

value of 1.0 V, the cross-coupled devices of the DCO were chosen to be thick-oxide

devices available for IO purposes in the process used.

The oscillator bias current can be adjusted using a bank of triode nMOSes

whose gate is controlled via serial port [7]. A tail LC filter tuned around the second

harmonic of the nominal output frequency is used to suppress the noise coming from

the triode nMOSes and reduce the oscillator frequency pushing due to power supply

variations [59].

VII. MEASUREMENT RESULTS

The FDC based phase-locked loop described in this Chapter was fabricated in

a 65nm 7 metal layer CMOS process provided by ST Microelectronics. The prototype

occupies an area of 1.3 mm2 with an active area of about 0.5 mm2 including all input

and output buffers. The total current drawn is 20.4 mA. The DCO, digital loop con-

110

troller, MRQ-DEM encoder, divider, and output buffers are powered from a 1.0V

supply, while the phase-frequency detector, charge-pump, ADC and reference buffer

supply voltage is set to 1.2 V. A photograph of a packaged die is shown in Figure 40.

At the time this dissertation was completed the prototype testing was still in

progress. A representative set of measurements of the PLL phase noise across the five

boards tested is shown in Table 3. A plot of the measured PLL output phase noise is

presented in Figure 41. The power of in band fractional spurious tones is reported in

Table 4 for several values of the fractional divisor modulus and a 40 kHz bandwidth.

The DCO measured 1/f3 phase noise is significantly higher than what obtained

by simulation. For the measured amount of DCO noise, the FDC PLL model devel-

oped in Chapter 1 predicts the phase noise to be −80 dBc/Hz at a 10 kHz offset for a

frequency synthesizer with the settings listed in Table 2. The measured in-band phase

noise though is several dB higher, and the fractional spurious tone power is sensitive

to both the charge pump current and ADC step size. For some values of α, the frac-

tional spurious tone power is lower than the noise floor of the spectrum analyzer

used, as shown in Figure 42, while for others values of α it can be as high as -36 dBc.

The worst case measured reference spur across all five boards is -82 dBc, for a 40

kHz bandwidth.

All the plots shown were obtained from the part in board number 4, for which

a FIB edit was performed in order to correct a wiring mistake in the MRQ-DEM en-

coder ΔΣ modulator input MSB. The MRQ-DEM encoder mismatch shaping algo-

rithm is disabled for the all the evaluations reported. The reason for the increased in-

111

band phase noise and spurious tone degradation is currently being investigated.

ACKNOWLEDGEMENTS

The dissertation author is the primary investigator and author of this chapter.

Professor Ian Galton supervised the research which forms the basis for this chapter.

The author would like to thank Colin Weltin-Wu, for place and route of the digital

loop controller and the modified DEM encoder, Jason Remple for contributing to the

development of part of the simplified logic for the MRQ-DEM encoder, Kevin Wang

and Gerry Taylor for helpful discussions.

FIGURES

10-level
ADC

voutPFD
fref

Charge
Pump

C

2−z−1

Digital
Loop
Filter

v[n]

(N−v[n])
ΔΣ FDC

vdiv

vref

vdiv

vref

1

1
1 z−−

vADC-clk

Digital Loop Controller
LSB

4

3
1−z−1

MRQ
DEM DCO

vclkP

y[n]

3

vref

vref

Figure 21: Delta-sigma FDC-PLL prototype architecture

112

Figure 22: Simplified timing diagram of the FDC-PLL synthesizer prototype

Mp1

Mp2

Mn2

Mn1

VBp2

VBn2

VBp1

VBn1

Up

Mp5

Mp4Downb Mp3 VBp1

VBp2

Mn4

Mn5VBn2

VBn1Mn3

C

vswicp(t)
Vc(t)

vsw

Ioc

icp

vsw vswvsw

vsw
vswvsw

Charge Pump

IOC

Figure 23: Charge pump circuit implementation

113

Mp1

Mp2 Mp3Vin Viref

Mn5

Mp4

Mp5 Mp6

Mn6

Latchb

Vbias Latchb

Mn7Latch

Mn2 Mn1 Mn3Mn4

Figure 24: Comparator for the 10-level flash ADC

Figure 25: Divider architecture

114

Figure 26: Divide-by-2/3 cell implementation

Figure 27: Representative divider time diagram for the case of a divider modulus
equal to 128

1

1
1 z−−

1ˆ []e nΔΣ−

ˆ[]p n[]p n

ˆ []ADCe n−

Figure 28: Functional diagram of the general quantization noise cancelling algorithm
implementation

115

10
4

10
5

10
6

10
7

10
8-170

-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

Ph
as

e
N

oi
se

 (d
B

c/
H

z)

Figure 29: Effect of quantization noise cancellation on the synthesizer output phase
noise. The black curve represents the PLL output phase noise when the quantization
noise algorithm is disabled. When quantization noise cancellation is enabled with a
10-level ADC, a 6 dB reduction in the PLL output phase noise is achievable at fre-
quencies where the FDC quantization noise dominates (red curve). A 80-level ADC
allows to suppress the quantization noise to a point where it is no more a dominant
source of phase noise for the synthesizer (blue curve).

116

Figure 30: Measured effect of the quantization noise cancelling algorithm. The yel-
low curve shows the synthesizer output spectrum with both the IIR filters and the
quantization noise cancelling algorithm disabled. The blue curve shows the synthe-
sizer output spectrum with the IIR filters disabled and the quantization noise cancel-
ling algorithm enabled

ˆ[]y n

Figure 31: Digital loop controller functional diagram

117

1

0 S

1

0 S

, []k rc n
⎧
⎪
⎨
⎪
⎩

top
output

⎫⎪
⎬
⎪⎭}LSBs

MSB

}LSBs

MSB
bottom
output

⎫⎪
⎬
⎪⎭

LSBs{

MSB

Switching
Sequence
Generator

clk
Sk,r

,1[]kc n
⎧
⎪
⎨
⎪
⎩

top
output

⎫⎪
⎬
⎪⎭}LSBs

MSB

}bottom output

LSBs{

MSB

Switching
Sequence
Generator

clk
Sk,1

(a)

(b) dk[n]

dk[n]

Q
Q

D

1

0 S

clk

1

0

S
Q
Q

D

1

0 S

clk

dk[n]

Switching Sequence Generator(c)

k−1

k−1

Figure 32: Adder-free implementation of a) non-segmenting and b) segmenting
switching blocks and c) the switching sequence generator

118

, []k rc n
⎧
⎪
⎨
⎪
⎩

top
output

⎫⎪
⎬
⎪⎭}LSBs

MSB

}LSBs

MSB bottom
output

⎫⎪
⎬
⎪⎭

LSBs{

MSB

(a)

(b)

dk[n]

Sk,r

k−1

(1)[]x mΔΣ

(2)[]x mΔΣ

(3)[]x mΔΣ

3
[]c mΔΣ

(0)[]c mΔΣ

(1)[]c mΔΣ

(2)[]c mΔΣ

c'1[m]

c'2[m]

c'3[m]

1-b DAC 256ΔF

1-b DAC 256ΔF

1-b DAC 256ΔF

1-b DAC 256ΔF
c'4[m]

S2,1

S1,1

S1,2

Local
DEM
Encoder

Figure 33: Implementation of a) non-segmenting switching block in the local DEM
encoder and b) the local DEM encoder

119

x[n] S14,1

S3,1

S2,1

S2,2 S1,14

S1,15

S1,12

S1,13

S1,10
S5,1

S4,1 S1,11

Modified DEM Encoder

vref

S7,1

S6,1 S1,9

c21[n]
c22[n]

c19[n]
c20[n]

c23[n]

c26[n]
c27[n]

c24[n]
c25[n]

c28[n]
c29[n]
c30[n]

c17[n]
c18[n]

8 LSBs
98 xf[n]

15

0

1414 13

Figure 34: The adder-free modified DEM encoder for an adder-free MRQ-DEM en-
coder implementation

Figure 35: Functional diagram of the dithered second-order digital ΔΣ modulator with
period distortion compensation. The enable signal is active once per divider period in
correspondence to a stretched ΔΣ clock period. When active during the nth divider
period, enable modifies the gain of the two elements it drives from a value of 1 to the
value marked in their symbols

120

xf[n]

d [m]
1-bit LSB

dither

1.8 3.8

0.82.8

3.0

x [m]

z−1(2−z−1)

Figure 36: Signal processing diagram of the MRQ-DEM ΔΣ modulator as imple-
mented in the synthesizer prototype

1-b Var.

COARSE

M2M1

7

6

14

4

SPI
Control

M3-6
4

FINE

INTERM

DEM
and ΔΣ

SPI
Control

1-b Var. C

1-b Var. C

1-b Var. C

1-b Var. C

1-b Var. C

1-b Var. C

Coarse
Varactor Bank

1-b Var. C

SPI

To
DCO

To
DCO

R R

Figure 37: Digitally controlled oscillator – coarse tuning bank

121

Figure 38: Digitally controlled oscillator – intermediate tuning bank

122

COARSE

M2M1

7

6

14

4

SPI
Control

M3-6
4

FINE

INTERM

DEM
and ΔΣ

SPI
Control

1-b Var. F

Fine DCO
Varactor Bank

To
DCO

M1

M1/2

M1/2

R1

R1

To
DCO

To
DCO

To
DCO

in D
Q
Q

C1

C1C1+ FC

in D

C1+ FC

1-b Var. F

1-b Var. F

1-b Var. F

1-b Var. F

1-b Var. F

1-b Var. F

1-b Var. F

1-b Var. F

1-b Var. F

1-b Var. F

1-b Var. F

1-b Var. F

1-b Var. F

1-b Var. F

1-b Var. F

1-b Var. F

1-b Var. F

1-b Var.

Figure 39: Digitally controlled oscillator – fine tuning bank

123

Figure 40: Packaged die photograph of the synthesizer prototype

124

Figure 41: Representative phase noise plot of the synthesizer prototype for a 40 kHz
bandwidth

125

Figure 42: Best spurious tone performance achieved by the prototype. The fractional
spur, expected to be at 26 kHz from the carrier, has a power that is below the spec-
trum analyzer noise floor. The reason for the spurious tone magnitude dependence on
the fractional divisor modulus is currently being investigated

126

TABLES

Table 2: Parameters and evaluation settings of the prototype FDC-PLL

 Design Parameters and Evaluation Settings Value
fref 26 MHz
fPLL 3.1 – 4.0 GHz
N 123 – 154
α [-0.5, 0.5]
KDCO 34 kHz
VDD 1.0 V / 1.2 V
Δ 40 mV
ADC Input Range 0.5-0.7 V
C 1.25 pF
ICP 180 μA
IOC −ICP
TOC 2 ns
TDZ 1 ns
KP 768·2-7
KI 768·2-17
λ0, λ1, λ2, λ3 768·(2-3, 2-3, 2-5, 2-5)
Loop-filter Word Width 32 bits
DCO Input Word Width 14 bits
DCO’s ΔΣ Modulator Input Word Width 8 bits
DCO’s ΔΣ Modulator Update Rate fPLL/4, fPLL/8, fPLL/16

127

Table 3: Measured phase noise performance of the synthesizer prototype

Table 4: Measured spurious tone performance of the synthesizer prototype

Board
PN @
1 kHz

PN @
10 kHz

PN @
100 kHz

PN @
1 MHz

PN @
3 MHz

1 -75 dBc/Hz -74 dBc/Hz -86 dBc/Hz -120 dBc/Hz -125 dBc/Hz
2 -75 dBc/Hz -72 dBc/Hz -85 dBc/Hz -120 dBc/Hz -125 dBc/Hz
3 -75 dBc/Hz -72 dBc/Hz -86 dBc/Hz -120 dBc/Hz -125 dBc/Hz
4 -75 dBc/Hz -74 dBc/Hz -93 dBc/Hz -122 dBc/Hz -126 dBc/Hz
5 -74 dBc/Hz -72 dBc/Hz -86 dBc/Hz -119 dBc/Hz -125 dBc/Hz

Board
Spur Power
α = 0.000125

Spur Power
α = 0.00025

Spur Power
α = 0.00050

Spur Power
α = 0.00100

Spur Power
α = 0.00150

1 -38 dBc -38 dBc -41 dBc -41 dBc -39 dBc
2 -37 dBc -37 dBc -38 dBc -40 dBc -36 dBc
3 -41 dBc -41 dBc -45 dBc -47 dBc -46 dBc
4 -46 dBc -49 dBc -43 dBc -61 dBc -60 dBc
5 -39 dBc -39 dBc -36 dBc -41 dBc -39 dBc

128

REFERENCES

54. C.W. Mangelsdorf, “A 400-MHz input flash converter with error correction,”

IEEE Journal of Solid-State Circuits, vol.25, no. 1, pp. 184-191, Feb 1990.

55. C.S. Vaucher, et al. “A family of low-power truly modular programmable di-
viders in standard 0.35-um CMOS technology,” IEEE Journal of Solid-State
Circuits, vol. 35, no. 7, pp. 1039-1045, July 2000.

56. J. Welz, I. Galton, E. Fogleman, “Simplified logic for first-order and second-
order mismatch-shaping digital-to-analog converters,” IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, no. 11,
pp. 1014-1028, November 2001.

57. A. Keady and C. Lyden, “Tree structure for mismatch noise-shaping multibit
DAC,” Electron. Lett., vol. 33, no. 17, pp. 1431–1432, Aug. 1997.

58. H. T. Jensen and I. Galton, “A reduced-complexity mismatch-shaping DAC for
delta-sigma data converters,” Proc. IEEE Int. Symp. Circuits and Systems, May
31–June 3 1998, pp. 504–507.

59. Hegazi, et al., “A filtering technique to lower LC oscillator phase noise” IEEE
Journal of Solid-State Circuits, vol.36, no.12, pp.1921,1930, Dec 2001.

60. G. Taylor, I. Galton, “A Reconfigurable Mostly-Digital Delta-Sigma ADC
With a Worst-Case FOM of 160 dB” IEEE Journal of Solid-State Circuits,
vol.48, no.4, pp.983,995, April 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

