Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

α-Toxin Regulates Local Granulocyte Expansion from Hematopoietic Stem and Progenitor Cells in Staphylococcus aureus–Infected Wounds

Abstract

The immune response to Staphylococcus aureus infection in skin involves the recruitment of polymorphonuclear neutrophils (PMNs) from the bone marrow via the circulation and local granulopoiesis from hematopoietic stem and progenitor cells (HSPCs) that also traffic to infected skin wounds. We focus on regulation of PMN number and function and the role of pore-forming α-toxin (AT), a virulence factor that causes host cell lysis and elicits inflammasome-mediated IL-1β secretion in wounds. Infection with wild-type S. aureus enriched in AT reduced PMN recruitment and resulted in sustained bacterial burden and delayed wound healing. In contrast, PMN recruitment to wounds infected with an isogenic AT-deficient S. aureus strain was unimpeded, exhibiting efficient bacterial clearance and hastened wound resolution. HSPCs recruited to infected wounds were unaffected by AT production and were activated to expand PMN numbers in proportion to S. aureus abundance in a manner regulated by TLR2 and IL-1R signaling. Immunodeficient MyD88-knockout mice infected with S. aureus experienced lethal sepsis that was reversed by PMN expansion mediated by injection of wild-type HSPCs directly into wounds. We conclude that AT-induced IL-1β promotes local granulopoiesis and effective resolution of S. aureus-infected wounds, revealing a potential antibiotic-free strategy for tuning the innate immune response to treat methicillin-resistant S. aureus infection in immunodeficient patients.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View