Toward patient-tailored summarization of lung cancer literature*
Published Web Location
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511748/Abstract
As the volume of biomedical literature increases, it can be challenging for clinicians to stay up-to-date. Graphical summarization systems help by condensing knowledge into networks of entities and relations. However, existing systems present relations out of context, ignoring key details such as study population. To better support precision medicine, summarization systems should include such information to contextualize and tailor results to individual patients.This paper introduces “contextualized semantic maps” for patient-tailored graphical summarization of published literature. These efforts are demonstrated in the domain of driver mutations in non-small cell lung cancer (NSCLC). A representation for relations and study population context in NSCLC was developed. An annotated gold standard for this representation was created from a set of 135 abstracts; F1-score annotator agreement was 0.78 for context and 0.68 for relations. Visualizing the contextualized relations demonstrated that context facilitates the discovery of key findings that are relevant to patient-oriented queries.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.