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POSTPROCESSING GALERKIN METHOD APPLIED TO A

DATA ASSIMILATION ALGORITHM: A UNIFORM IN TIME

ERROR ESTIMATE

CECILIA F. MONDAINI AND EDRISS S. TITI

Abstract. We apply the Postprocessing Galerkin method to a recently intro-
duced continuous data assimilation (downscaling) algorithm for obtaining a
numerical approximation of the solution of the two-dimensional Navier-Stokes
equations corresponding to given measurements from a coarse spatial mesh.
Under suitable conditions on the relaxation (nudging) parameter, the resolu-
tion of the coarse spatial mesh and the resolution of the numerical scheme,
we obtain uniform in time estimates for the error between the numerical ap-
proximation given by the Postprocessing Galerkin method and the reference
solution corresponding to the measurements. Our results are valid for a large
class of interpolant operators, including low Fourier modes and local aver-
ages over finite volume elements. Notably, we use here the 2D Navier-Stokes
equations as a paradigm, but our results apply equally to other evolution equa-
tions, such as the Boussinesq system of Bénard convection and other oceanic
and atmospheric circulation models.

1. Introduction

Forecast models attempt to capture the future behavior of a real physical system
by using only theoretical arguments. The purpose of data assimilation algorithms
is to combine a forecast model with observational data in order to produce an
even better approximation of reality. Our goal in this work is to investigate the
continuous data assimilation algorithm introduced in the recent work [2] from a
numerical analysis viewpoint, by providing an analytical estimate for the error
obtained when using a spatial discretization scheme given by the Postprocessing
Galerkin method [24, 25].

The continuous data assimilation algorithm introduced in [2] was inspired by
ideas from feedback control theory (see, e.g., [3, 28, 29, 37, 38, 42, 46] and references
therein) and consists in a nudging type approach that is applicable to a large
class of dissipative evolution equations. In [2], the algorithm is illustrated for the
2D Navier-Stokes equations and under the assumptions of continuous in time and
error-free measurements. Further works extended this approach to more general
situations, such as continuous in time data assimilation with stochastically noisy
data [5] and discrete in time observations with systematic errors [20] (see also [31]).
Moreover, noisy observations were also considered in [6, 35] in the context of the
3DVAR filtering method. Applications of this algorithm to the physically important
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2 C. F. MONDAINI AND E. S. TITI

context of incomplete observations, as described, e.g., in [8], were done in the works
[11]-[15].

Here, we also consider, as a paradigm, the forecast model given by the two-
dimensional Navier-Stokes equations,

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f , ∇ · u = 0, (1.1)

where u = (u1, u2) and p are the unknowns and represent the velocity vector
field and the pressure, respectively; while ν > 0 and f are given and denote the
kinematic viscosity parameter and the density of volume body forces, respectively.
We assume that u and p are functions of a spatial variable x and a time variable
t, with x varying in a set Ω ⊂ R

2 and t varying in the time interval [t0,∞). For
simplicity, f is assumed to be time-independent, although similar results are valid
for a time-dependent f whose L2-norm is uniformly bounded in time.

Our reference solution, whose exact value is unknown, is assumed to be a solution
u of (1.1). The given measurements, corresponding to u, are observed from a coarse
spatial mesh and are assumed, for simplicity, to be continuous in time and error-
free, as in [2]. We denote the operator used for interpolating these measurements
in space by Ih, where h denotes the resolution of the coarse spatial mesh of the
observed measurements. Thus, the interpolated measurements are represented by
Ih(u). Since the initial condition u(t0) for u is missing, one cannot compute u

by integrating (1.1) directly. The idea consists then in recovering the exact value
of the reference solution u by using the given measurements, Ih(u), through an
approximate model. In other words, our purpose here is to provide a downscaling
algorithm for recovering the fine scales of u from the coarse scale measurements
Ih(u).

In [2], this is done by seeking for an approximate solution v = (v1, v2) satisfying
the following system, for (x, t) ∈ Ω× I ⊂ R

2 × R,

∂v

∂t
− ν∆v + (v · ∇)v +∇π = f − β(Ih(v) − Ih(u)), ∇ · v = 0, (1.2)

where the unknown π is the pressure of the approximate flow v; ν > 0 and f are
the same viscosity parameter and forcing term from (1.1), respectively; and β is the
relaxation (nudging) parameter. The second term in the right-hand side of the first
equation in (1.2) is called the feedback control term and its role is to force (or nudge)
the coarse spatial scales of the approximating solution v towards the coarse spatial
scales of the reference solution u, which is done by suitably tuning the relaxation
parameter β. In [2, Theorems 1 and 2], the authors prove that, provided β is large
enough and h is sufficiently small, both depending on the physical parameters,
the approximate solution v of (1.2), corresponding to an arbitrary initial data v0,
converges, exponentially in time, to the reference solution u of (1.1).

The aim of this paper is to obtain a numerical approximation of v, which is done
here by using the Postprocessing Galerkin method [24, 25], and thus indirectly
approximate the reference solution u. First, let us rewrite the system of equations
(1.2) in the following equivalent functional form

dv

dt
+ νAv +B(v,v) = g− βPσ(Ih(v)− Ih(u)), (1.3)

where Pσ is the orthogonal projection of (L2(Ω))2 onto the phase space H asso-
ciated to (1.2), which is endowed with the norm of (L2(Ω))2, | · |L2 ; A = −Pσ∆
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is the Stokes operator; B(v,v) = Pσ[(v · ∇)v], a bilinear operator (see section
2 for more detailed definitions); and g = Pσf . Since A is a positive and self-
adjoint operator with compact inverse, it admits an orthonormal basis of eigenvec-
tors {wi}i∈N. Then, for each N ∈ N, we can consider the finite-dimensional space
HN = span{w1, . . . ,wN} = PNH , with PN denoting the orthogonal projection of
H onto HN . A numerical approximation of the solution v of (1.3) can be obtained
by computing the Galerkin approximation vN ∈ PNH , which satisfies the following
system of ordinary differential equations

dvN
dt

+ νAvN + PNB(vN ,vN ) = PNg − βPNPσ(Ih(vN )− Ih(u)). (1.4)

Notice that, since vN ∈ PNH , the error committed in approximating v by vN
must be greater than or equal to the error associated with the best approximation
of v in PNH , PNv, i.e.

|v − vN |L2 ≥ |v − PNv|L2 = |QNv|L2 ,

where QN = I − PN .
The Postprocessing Galerkin method provides us with an efficient way of ob-

taining a better approximation of v than vN . The idea consists in complementing
the finite-dimensional approximation vN ∈ PNH of v with a suitable part lying in
the complement space QNH . Adapting the algorithm introduced in [24, 25] to our
situation, we can summarize it in the following steps:

For obtaining an approximation of v at a certain time T > t0,

(i) Integrate (1.4) in time, over the time interval [t0, T ], to obtain vN and compute
vN (T );

(ii) Obtain qN satisfying νAqN = QN [f −B(vN (T ),vN (T ))];
(iii) Compute the new approximation to v(T ), and hence to u(T ), given by vN (T )+

qN .

The equation satisfied by qN in step (ii) is inspired by the definition of the
approximate inertial manifold introduced in [18], in which the authors obtain an
approximation of QNu, with u being a solution of (1.1), given by

QNu ≈ Φ1(PNu) = (νA)−1QN [f −B(PNu, PNu)]. (1.5)

The graph of the mapping Φ1 : PNH → QNH is called an approximate inertial
manifold. This approximation is obtained by applying the projection QN to equa-
tion (1.1) and, based on theoretical arguments, neglecting all lower order terms, i.e.,
the time derivative of QNu and the nonlinear terms involving QNu, in comparison
to the remaining terms. Since our idea is to ultimately obtain an approximation of
u, it is natural to consider as an approximation of QNv the same type of approxi-
mation used for QNu in (1.5), in which PNu is replaced by vN , given that this is
the approximation of PNu that we consider.

Our results show that the Postprocessing Galerkin method yields a better conver-
gence rate than the standard Galerkin method, as also obtained in [25]. However,
an important difference in our results is that our error estimate is uniform in time,
while in [24, 25] it grows exponentially in time. This remarkable difference is due to
the fact that the approximate system (1.4) has a stabilizing mechanism imposed by
the feedback control term, which kills the instabilities in the large (coarse) spatial
scales caused by the nonlinear term. As a consequence, as proved in [2, Theorems
1 and 2], under suitable conditions on the parameters β and h, the solutions of
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(1.2), corresponding to arbitrary initial data, all converge to the same reference
solution u. This shows that, with the appropriate conditions on β and h, system
(1.2) is globally asymptotically stable. Hence, the Galerkin approximation vN of v
converges to v uniformly in time, as N tends to infinity.

This stabilizing effect was also observed by the numerical computations per-
formed in [27] by using the Galerkin method (see also [1]), which showed that the
required conditions on the parameters β and h are remarkably less strict than sug-
gested by the analytical results in [2]. Consequently, this work provides a rigorous
analytical justification for the computational study in [1, 27].

It is worth mentioning that the introduction of the Postprocessing Galerkin
method was preceded by another spectral method also derived from the standard
Galerkin approach and inspired by the idea of approximate inertial manifold, known
as the Nonlinear Galerkin method (see, e.g., [10, 16, 32, 40] and references therein).
The main difference between the two approaches is that, in the Postprocessing
Galerkin method, the integration of the low modes does not use the information
about the high modes: only at the final step the high modes are used in order to re-
fine the solution (see step (ii), above). On the other hand, in the Nonlinear Galerkin
method, the time step integration of the low modes is continuously updated by us-
ing the information on the high modes. For this reason, the Nonlinear Galerkin
method, although providing a better error estimate in comparison to the standard
Galerkin method, has the disadvantage of being a lot more computationally ex-
pensive and thus, in practice, less efficient (cf. [24, 25, 30, 39]). In an attempt of
obtaining an algorithm that would overcome this disadvantage, while still keeping
the better accuracy of the Nonlinear Galerkin method, the Postprocessing Galerkin
method was developed.

Moreover, it is shown in [39], by using a truncation analysis argument, that the
Postprocessing Galerkin method is more than a technique for improving efficiency.
The authors show that the Postprocessing Galerkin method is actually the correct
leading order approximating scheme, and not the standard Galerkin method, as it
is commonly believed.

We emphasize that, the case of continuous in time measurements and continuous
in time Galerkin approximations were considered here for simplicity and in order
to fix ideas. However, combining ideas from this work with those in [20], one can
extend our results to the case of discrete in time measurements with errors and
to discretize, accordingly, the Galerkin scheme (1.4) in time. This is a subject of
future work. Moreover, we considered here the Galerkin approximation based on
the eigenfunctions of the Stokes operator. However, following the ideas from [26],
one can also employ the Postprocessing Galerkin method in the context of finite
elements and apply it to our data assimilation scheme. Furthermore, since our
data assimilation algorithm is inspired by feedback control ideas, we expect that
our results will equally apply to feedback control systems.

This paper is organized as follows. In section 2, we provide a summary of the
necessary background related to the two-dimensional Navier-Stokes equations that
will be needed in the sequel. Section 3 contains the main results of this paper. The
purpose is to show a uniform in time estimate of the error committed when ap-
plying the Postprocessing Galerkin method described in (i)-(iii), above, to system
(1.2), in order to obtain an approximation of the reference solution u satisfying
(1.1) (Theorems 3.2 and 3.4). We divide the presentation into two subsections:
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subsection 3.1 deals with the case of an interpolant operator given by a low Fourier
modes projector; while subsection 3.2 deals with a more general class of interpolant
operators satisfying suitable properties, for which an example is given by the op-
erator defined as local averages over finite volume elements, in the case of periodic
boundary conditions. Finally, in the Appendix, we show for completeness that such
example of interpolant operator verifies the properties considered in subsection 3.2.

2. Preliminaries

In this section, we briefly recall the necessary background on the two-dimensional
incompressible Navier-Stokes equations (1.1). For further details, see, e.g., [9, 17,
43, 45].

Consider a spatial domain Ω ⊂ R
2 and a time interval [t0,∞) ⊂ R. We as-

sume, for simplicity, that the forcing f is time-independent and lies in the space
L2(Ω)2. We remark, however, that similar results are also valid in the case f ∈
L∞([t0,∞);L2(Ω)2).

We consider two types of boundary conditions for system (1.1): periodic or
no-slip Dirichlet. In the periodic case, we consider the fundamental domain Ω =
(0, L) × (0, L). Moreover, we assume that the velocity field and the pressure are
periodic with period L in each spatial direction xi, i = 1, 2, and that f has zero
spatial average, i.e., ∫

Ω

f(x)dx = 0.

In the no-slip Dirichlet case, we consider Ω as a bounded subset of R2 with suffi-
ciently smooth boundary ∂Ω and assume that u = 0 on ∂Ω.

The definition of the space of test functions, denoted here by V , depends on the
type of boundary condition being considered. In the periodic case, V is defined as
the set of all L-periodic trigonometric polynomials fromR

2 to R2 that are divergence
free and have zero spatial average. In the no-slip Dirichlet case, we define V as the
family of C∞ vector fields with values in R

2 that are divergence free and compactly
supported in Ω.

We denote by H the closure of V with respect to the norm in L2(Ω)2, and by
V the closure of V under the H1(Ω)2 Sobolev norm. Following the notation from
[17], we denote the inner products in H and V by (·, ·)L2 and ((·, ·))H1 , respectively.
They are defined as

(u,v)L2 =

∫

Ω

u(x) · v(x)dx, ∀u,v ∈ H,

((u,v))H1 =

∫

Ω

2∑

i=1

∂u

∂xi
· ∂v
∂xi

dx, ∀u,v ∈ V,

and the associated norms are given by |u|L2 = (u,u)
1/2
L2 , ‖u‖H1 = ((u,u))

1/2
H1 .

The fact that ‖ · ‖H1 defines a norm in V is justified via the Poincaré inequality,
given by

λ
1/2
1 |u|L2 ≤ ‖u‖H1 , ∀u ∈ V, (2.1)

where λ1 is the first eigenvalue of the Stokes operator, defined in (2.3), below.
Given R > 0, we denote by BH(R) and BV (R) the closed balls centered at 0

with radius R, with respect to the norms in H and V , respectively.
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We also consider the dual spaces ofH and V , denoted by H ′ and V ′, respectively.
After identifying H with its dual, we obtain V ⊆ H ⊆ V ′, with the injections being
continuous, compact, and each space dense in the following one. Moreover, we
denote the duality product between V and V ′ by 〈·, ·〉V ′,V .

Let Pσ be the Leray-Helmholtz projector, i.e., the orthogonal projection of
L2(Ω)2 onto H . Applying Pσ to system (1.1), we obtain its following equivalent
functional formulation:

du

dt
+ νAu+B(u,u) = g in V ′, (2.2)

where g = Pσf ∈ H , B : V × V → V ′ is the bilinear operator defined as the
continuous extension of the operator given by

B(u,v) = Pσ((u · ∇)v), ∀u,v ∈ V ,

and A : D(A) ⊆ V → V ′ is the Stokes operator, defined as the continuous extension
of

Au = −Pσ∆u, ∀u ∈ V , (2.3)

with the domain of A, D(A), given by V ∩H2(Ω)2.
The Stokes operator is a positive and self-adjoint operator with compact inverse.

Therefore, it admits an orthonormal basis of eigenvectors {wm}m∈N associated
with a nondecreasing sequence of positive eigenvalues {λm}m∈N, with λm → ∞ as
m→ ∞.

We also consider, for each N ∈ N, the low modes projector PN , which is defined
as the orthogonal projector of H onto the subspace HN = span{w1, . . . ,wN}.
Moreover, we denote QN = I − PN .

The bilinear operator B satisfies the following property:

〈B(u1,u2),u3〉V ′,V = −〈B(u1,u3),u2〉V ′,V , ∀u1,u2,u3 ∈ V. (2.4)

Recall the Brézis-Gallouet inequality [7, 19], given by

‖u‖L∞ ≤ cB‖u‖H1

[
1 + log

(
|Au|L2

λ
1/2
1 ‖u‖H1

)]1/2
, ∀u ∈ D(A), (2.5)

where cB is a nondimensional (scale invariant) constant, and ‖ · ‖L∞ denotes the
usual norm in L∞(Ω)2.

We now recall some inequalities satisfied by the bilinear term B. Using Brézis-
Gallouet inequality (2.5), we obtain that, for every u1 ∈ D(A) with u1 6= 0 and
every u2 ∈ V and u3 ∈ H ,

|(B(u1,u2),u3)L2 | ≤ cB‖u1‖H1‖u2‖H1 |u3|L2

[
1 + log

(
|Au1|L2

λ
1/2
1 ‖u1‖H1

)]1/2
. (2.6)

We also recall the following logarithmic inequalities from [47]:
For every u1,u2,u3 ∈ V , with u3 6= 0,

|(B(u1,u2),u3)L2 | ≤ cT ‖u1‖H1‖u2‖H1 |u3|L2

[
1 + log

(
‖u3‖H1

λ
1/2
1 |u3|L2

)]1/2
. (2.7)
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For every u1 ∈ V , and every u2,u3 ∈ D(A), with u2 6= 0,

|(B(u1,u2), Au3)L2 | ≤ cT ‖u1‖H1‖u2‖H1 |Au3|L2

[
1 + log

(
|Au2|L2

λ
1/2
1 ‖u2‖H1

)]1/2
.

(2.8)
Also, for every u1,u2 ∈ V , we have

B(u1,u1)−B(u2,u2) = B

(
u1 − u2,

u1 + u2

2

)
+B

(
u1 + u2

2
,u1 − u2

)
.

Then, it follows from the result in [9, Proposition 6.1] that, for every α > 1/2,

|A−α(B(u,u)−B(v,v))| ≤ cα|Ω|α−
1
2 ‖u+ v‖H1 |u− v|L2 , (2.9)

where |Ω| denotes the area of Ω and cα is a constant depending on α through the
Sobolev constants from the Sobolev embeddings of H2α(R2) into L∞(R2), and of
Hs(R2) into Lq(R2), with 1 > s > (2 − 2α), and q = 2/(1− s). Thus, cα → ∞ as

α→ 1
2

+
.

Along this paper, we denote by c a positive absolute constant or a nondimensional
positive constant depending on Ω, whose value may change from line to line; while
the capital letter C denotes a dimensional constant, depending on the physical
parameters, such as ν, λ1 and |g|L2 .

Finally, we recall some results concerning uniform bounds, with respect to the
norms in H and V , for the solutions of (1.1). It is well-known that, given u0 ∈
H , there exists a unique weak solution of (1.1) satisfying u(t0) = u0 and u ∈
C([t0,∞);H)∩L2

loc(t0,∞;V ), with du/dt ∈ L2
loc(t0,∞;V ′). From now on, whenever

we refer to a solution of (1.1), we mean a solution in this sense.
The proof of the next proposition can be found in any of the references listed

above ([9, 17, 43, 45]). Recall the definition of the Grashof number, which is the
nondimensional quantity given by

G =
|g|L2

ν2λ1
.

Proposition 2.1. Let u0 ∈ H and let u be a solution of (1.1) satisfying u(t0) = u0.
Then, there exists T = T (ν, λ1, |g|L2 , |u0|L2) ≥ t0 such that the following hold:

(i) In the case of periodic boundary conditions,

|u(t)|L2 ≤ 2νG, ‖u(t)‖H1 ≤ 2νλ
1/2
1 G, ∀t ≥ T. (2.10)

(ii) In the case of no-slip boundary conditions,

|u(t)|L2 ≤ 2νG, ‖u(t)‖H1 ≤ cνλ
1/2
1 G e

G4

2 , ∀t ≥ T. (2.11)

In order to simplify the notation, we write the uniform bounds in the H and V
norms from Proposition 2.1 by using constants M0 and M1, respectively, i.e.,

|u(t)|L2 ≤M0, ‖u(t)‖H1 ≤M1, ∀t ≥ T. (2.12)

Notice that the value of M1 changes according to the boundary condition being
considered.

The following theorem follows immediately from the result proved in [18, Theo-
rem 1.1] (see also [48]).
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Theorem 2.1. Let u0 ∈ H and let u be a solution of (1.1) satisfying u(t0) = u0.
Then, there exists T = T (ν, λ1, |g|L2 , |u0|L2) ≥ t0 such that

|QNu(t)|L2 ≤ C0
LN
λN+1

, ∀t ≥ T, ∀N ∈ N, (2.13)

‖QNu(t)‖H1 ≤ C1
LN

λ
1/2
N+1

, ∀t ≥ T, ∀N ∈ N, (2.14)

where

LN =

[
1 + log

(
λN
λ1

)]1/2
, (2.15)

C0 = c

( |QNg|L2 +M2
1

ν

)
, (2.16)

C1 = c

( |QNg|L2 +M2
1

ν
+
M0M

2
1

ν2

)
, (2.17)

and M0 and M1 are as given in (2.12).

The next theorem was proved in [18, Theorem 2.1], and it provides uniform in
time estimates, in the H and V norms, for the distance between a solution u of
(1.1) and its vertical projection on the graph of the mapping Φ1, given in (1.5).

Theorem 2.2. Let u0 ∈ H and let u be a solution of (1.1) satisfying u(t0) = u0.
Then, there exists T = T (ν, λ1, |g|L2 , |u0|L2) ≥ t0 such that

|Φ1(PNu(t)) −QNu(t)|L2 ≤ C
LN

λ
3/2
N+1

, ∀t ≥ T, ∀N ∈ N, (2.18)

and

‖Φ1(PNu(t))−QNu(t)‖H1 ≤ C
LN
λN+1

, ∀t ≥ T, ∀N ∈ N, (2.19)

where C is a constant depending on ν, λ1 and |g|L2 , but independent of N .

Remark 2.1. In the results of section 3, we will assume that the reference solution
of (1.1) has evolved long enough so that the uniform bounds from Proposition
2.1, Theorem 2.1 and Theorem 2.2 are always valid, i.e., for simplicity, we assume
that T = t0. Notice that, in particular, the uniform bounds from Proposition 2.1,
Theorem 2.1 and Theorem 2.2 are valid for any trajectory u = u(t) lying in the
global attractor of (1.1), for every t ∈ R.

3. Main Results

The purpose of this section is to establish analytical estimates of the error that
occurs when using the Postprocessing Galerkin method applied to the data assimi-
lation algorithm (1.2) in order to obtain an approximation of the reference solution
u, which satisfies the 2D Navier-Stokes equations (1.1). This means we want to
establish an estimate of the difference [(vN + Φ1(vN )) − u] in some appropriate
norm, where vN denotes the Galerkin approximation of v, the solution of (1.2), in
PNH . This is done here for the norms in the spaces H and V .

We start by giving some of the main ideas behind our results. From now on, we
reserve the letter N ∈ N for the number of modes in the Galerkin approximation
of (1.2), and we adopt the following notation for the low and high modes of the
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reference solution u: p = PNu and q = QNu, respectively. Moreover, we assume
that u satisfies the bounds from (2.12)-(2.19), for every t ≥ t0.

First, we rewrite the error in implementing the Postprocessing Galerkin method
as

(vN +Φ1(vN ))− u = (vN − p) + (Φ1(p)− q) + (Φ1(vN )− Φ1(p)). (3.1)

From Theorem 2.2, we have that, for every t ≥ t0,

|Φ1(p(t))− q(t)|L2 ≤ C
LN

λ
3/2
N+1

(3.2)

and

‖Φ1(p(t)) − q(t)‖H1 ≤ C
LN
λN+1

, (3.3)

where C = C(ν, λ1, |g|L2).
Moreover, it is not difficult to see that the restriction of Φ1 to the set PNBV (R),

for any R > 0, is a Lipschitz continuous mapping with respect to the norms in both
H and V (see, e.g., [10, Appendix]). More specifically, we have

|Φ1(p1)− Φ1(p2)|L2 ≤ l|p1 − p2|L2 , ∀p1,p2 ∈ PNBV (R), (3.4)

and
‖Φ1(p1)− Φ1(p2)‖H1 ≤ l‖p1 − p2‖H1 , ∀p1,p2 ∈ PNBV (R), (3.5)

where l = Cλ
−1/4
N+1 , with C being a constant depending on ν, λ1 and R.

It follows from Propositions 3.1 and 3.3 below that, given a solution u of (1.1)
satisfying (2.12)-(2.14), for every t ≥ t0, and given v0 ∈ BV (M1), under suitable
conditions on the parameters β and h, the solution vN of (1.2), with vN (t0) =
PNv0, satisfies vN (t) ∈ BV (3M1), for all t ≥ t0. Thus, using (3.2), (3.3) and
(3.4)-(3.5) with R = 3M1, we obtain from (3.1) that, for every t ≥ t0,

|(vN (t) + Φ1(vN (t))) − u(t)|L2 ≤ (1 + l)|vN (t)− p(t)|L2 + C
LN

λ
3/2
N+1

, (3.6)

and

‖(vN (t) + Φ1(vN (t)))− u(t)‖H1 ≤ (1 + l)‖vN(t)− p(t)‖H1 + C
LN
λN+1

. (3.7)

Moreover, we also have

‖vN (t)− p(t)‖H1 ≤ λ
1/2
N |vN (t)− p(t)|L2 . (3.8)

Thus, using also (3.8), we see from (3.6) and (3.7) that it suffices to obtain an
estimate for |vN (t)− p(t)|L2 in order to achieve our goal.

Applying PN to (2.2), we see that p = PNu satisfies the equation

dp

dt
+ νAp+ PNB(p,p)− PNg = −PNG, (3.9)

where

G(t) = B(u(t),u(t)) −B(p(t),p(t))

= B(p(t),q(t)) +B(q(t),p(t)) +B(q(t),q(t)); (3.10)

while we recall from (1.4) that vN satisfies the equation

dvN
dt

+ νAvN + PNB(vN ,vN )− PNg = −βPNPσIh(vN − u). (3.11)
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Now, denoting w = vN − p and taking the difference between (3.9) and (3.11), we
obtain that

dw

dt
+ νAw + βw + PN [B(vN ,vN )−B(p,p)] = PNG− βPNPσ[Ih(w)−w]

+ βPNPσIh(q). (3.12)

The terms νAw and βw represent the dissipative terms in (3.12), which act on
stabilizing w. The term Aw has a stronger effect than βw on the high modes of w,
for small values of ν; while βw has a stronger effect than νAw on the low modes
of w.

Applying the Duhamel’s (variation of constants) formula to (3.12), yields, for
every s ≥ t,

w(s) = e−(s−t)(νAPN+βPN ) w(t)

−
∫ s

t

e−(s−τ)(νAPN+βPN ) PN [B(vN (τ),vN (τ)) −B(p(τ),p(τ))]dτ

+

∫ s

t

e−(s−τ)(νAPN+βPN ) PNG(τ)dτ

− β

∫ s

t

e−(s−τ)(νAPN+βPN ) PN [PσIh(w(τ)) −w(τ)]dτ

+ β

∫ s

t

e−(s−τ)(νAPN+βPN ) PNPσIh(q(τ))dτ. (3.13)

The estimates for the terms on the right-hand side of (3.13) are obtained by
taking advantage of the smoothing effect of the operator e−(s−t)(νAPN+βPN ), with
the finite-dimensionality of the operator PN also playing a crucial role. Moreover,
the estimates for the last two terms on the right-hand side of (3.13) are obtained
by using suitable properties of the interpolant operator Ih.

We consider two types of interpolant operators Ih, treated in two different sec-
tions. In the first one, section 3.1, we consider Ih as a low Fourier modes projector,
i.e., Ih = PK , K ∈ N. In this case, we notice that we can commute PN with
Ih = PK and thus the last term on the right-hand side of (3.12) is zero, which
simplifies the analysis.

In section 3.2, we consider a more general class of interpolation operators, satis-
fying suitable properties (see properties (P1)-(P3) in section 3.2, below), which are,
in particular, satisfied by the example of a low Fourier modes projector considered
in section 3.1. Another particular example of such class of interpolant operators
is given by local averages over finite volume elements, which is illustrated in the
Appendix in the case of periodic boundary conditions. In this latter example, this
approach can be viewed as a hybrid method, in the sense that observations are
acquired through a finite elements method, while the approximate model is numer-
ically solved through a spectral method, the Postprocessing Galerkin.

The proof of the estimate for |vN−p|L2, in both cases, follows similar ideas to the
proof given in [25, Theorem 2], where, for a given initial condition u(t0) = u0, an
estimate was obtained for |uN − p|L2 , with uN being the Galerkin approximation
of u satisfying PNuN (t0) = PNu0. We remark, however, that an advantage of
our result is that the estimate for |vN − p|L2 is uniform in time (see Theorems
3.1 and 3.3), while the estimate for |uN − p|L2 given in [25, Theorem 2] grows
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exponentially in time. This important difference is justified by the presence of the
additional dissipative term βw in (3.12), which helps to stabilize the large scales of
w when the parameter β is suitably chosen. More specifically, β needs to be chosen
large enough in order to stabilize the large spatial scales of w, but not too large so
as not to destabilize the small spatial scales of w as well, which are dissipated by
νAw, for small values of ν. For this reason, we need, roughly, β ≤ cν/h2.

Using the previous ideas, we prove in Theorems 3.1 and 3.3 below that, for
sufficiently large t,

|vN (t)− p(t)|L2 ≤ O(L4
Nλ

−3/2
N+1 ), (3.14)

in the case of an interpolant operator given by a low Fourier modes projector; and

|vN (t)− p(t)|L2 ≤ O(LNλ
−5/4
N+1 ), (3.15)

in the general interpolant operator case.
Thus, from (3.6) and (3.7), it follows that, for t large enough,

|(vN (t) + Φ1(vN (t)))− u(t)|L2 ≤ O(L4
Nλ

−3/2
N+1 ) (3.16)

and

‖(vN (t) + Φ1(vN (t))) − u(t)‖H1 ≤ O(L4
Nλ

−1
N+1), (3.17)

in the case of an interpolant operator given by a low Fourier modes projector (cf.
Theorem 3.2); and

|(vN (t) + Φ1(vN (t)))− u(t)|L2 ≤ O(LNλ
−5/4
N+1 ) (3.18)

and

‖(vN (t) + Φ1(vN (t))) − u(t)‖H1 ≤ O(LNλ
−3/4
N+1 ), (3.19)

in the general interpolant operator case (cf. Theorem 3.4, below).
On the other hand, from (2.13), (2.14), (3.8), (3.14) and (3.15), we obtain that

the error between the Galerkin approximation vN of v and the reference solution
u satisfies, for t large enough,

|vN (t)− u(t)|L2 ≤ |vN (t)− p(t)|L2 + |q(t)|L2 ≤ O(LNλ
−1
N+1), (3.20)

‖vN (t)− u(t)‖H1 ≤ ‖vN (t)− p(t)‖H1 + ‖q(t)‖H1 ≤ O(LNλ
−1/2
N+1 ), (3.21)

in both cases of interpolant operators (cf. Corollaries 3.1 and 3.2, below).
Comparing (3.16) and (3.18) with (3.20), and (3.17) and (3.19) with (3.21), we

see that, as mentioned in the Introduction, the Postprocessing Galerkin method in-
deed yields a better convergence rate than the standard Galerkin method. Notably,
this improved rate is achieved due to essentially three facts: firstly, by exploring
the fact that the error in the low modes, |vN −p|L2 , is much smaller than the error
committed in the high modes, |q|L2 (cf. (3.14), (3.15) and (2.13)), when using the
standard Galerkin method; secondly, by complementing the finite-dimensional ap-
proximation vN ∈ PNH with a suitable approximation of the high modes, given by
Φ1(vN ) ∈ QNH , which yields a better approximation to q than 0 (cf. (3.2)-(3.3)
and (2.13)-(2.14)); and finally, by using the Lipschitz property of Φ1 (cf. (3.4),
(3.5)).

Remark 3.1. We notice that the convergence rates with respect to N in (3.18)-
(3.19), obtained for the error committed when implementing the Postprocessing
Galerkin method to (1.2) in the general interpolant operator case, is not as good
as the rate in (3.16)-(3.17), for the case of an interpolant operator given by a low
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Fourier modes projector. In general terms, as pointed out before, this is due to
the fact that the former case concerns a hybrid method, where the observations are
acquired through, e.g., a finite elements method, while the approximate model (1.2)
is discretized in space through a spectral method, the Postprocessing Galerkin. On
the mathematical side, this is represented by the possible lack of commutativity
between the operators PσIh and A, an issue that does not occur in the case of an
interpolant operator given by a low Fourier modes projector, and which introduces
additional error to the estimates.

3.1. The case of an interpolant operator given by a low Fourier modes

projector. We consider an interpolant operator given by the orthogonal projection
on low modes of the Fourier domain, i.e. Ih = PK , for some K ∈ N. The data
assimilation algorithm (1.3) is given in this particular case by

dv

dt
+ νAv +B(v,v) = g − βPK(v − u). (3.22)

For every N ∈ N with N ≥ K, we consider the Galerkin approximation system
of (3.22) in the space PNH , given by

dvN
dt

+ νAvN + PNB(vN ,vN ) = PNg− βPK(vN − u)

= PNg− βPK(vN − p), (3.23)

with an initial condition given by

vN (t0) = PNv0, (3.24)

where v0 is chosen in a suitable space, but arbitrarily. We assume either periodic
or no-slip Dirichlet boundary conditions.

The condition N ≥ K is assumed here for simplicity purposes. Nevertheless, it is
a natural assumption, since one would expect to have the resolution of the numerical
method to be greater or equal than the resolution associated to the observations.

The following result provides a first uniform in time bound of the finite-dimensional
difference vN − p in the H1 norm, under suitable conditions on β and K. Since
we assume that the reference solution u satisfies the bounds from (2.12)-(2.14), for
every t ≥ t0, we also have in particular that p is uniformly bounded in V . Thus,
as a consequence of the following proposition, we obtain that vN is also uniformly
bounded in V , provided β and K satisfy the appropriate conditions.

In the statement below, we consider an auxiliary parameter m ∈ N that is used
for one of the lower bounds needed for β. More specifically, we choose β such that,
in particular, β ≥ νλm. This auxiliary parameter plays a more important role in
the proof of Theorem 3.1, below, but we also use it here in order to be consistent.

Proposition 3.1. Let u be a solution of (1.1) satisfying (2.12)-(2.14), for every
t ≥ t0. Let v0 ∈ BV (M1), with M1 as in (2.12). For every N ∈ N, let vN be the
unique solution of (3.23) satisfying vN (t0) = PNv0. Consider m ∈ N large enough
such that

λm ≥ max

{
λ1 e

2
, c
C1

ν
L2
m, c

(
C2

1

νM1

)2/3

L2
m

}
. (3.25)

If β > 0 and K ∈ N are large enough such that

β ≥ max

{
νλm, c

M2
1

ν

[
1 + log

(
M1

νλ
1/2
1

)]}
(3.26)
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and

λK+1 ≥ 2β

ν
, (3.27)

then, for every N ≥ K,

sup
t≥t0

‖vN (t)− p(t)‖H1 ≤ 2M1. (3.28)

Proof. Projecting (1.1) onto PNH , we have

dp

dt
+ νAp+ PNB(u,u) = PNg. (3.29)

Denote w = vN − p. Subtracting (3.29) from (3.23), we obtain that

dw

dt
+ νAw + PN [B(vN ,vN )−B(u,u)] = −βPKw. (3.30)

Notice that

B(vN ,vN )−B(u,u) = B(vN ,vN )−B(p+ q,p+ q)

= B(vN ,vN )−B(p,p) −B(p,q)−B(q,p) −B(q,q)

= B(w,p) +B(p,w) +B(w,w) −B(p,q)−B(q,p) −B(q,q), (3.31)

Thus, from (3.30) and (3.31), we have

dw

dt
+ νAw = −PN [B(w,p)+B(p,w)+B(w,w)−B(p,q)−B(q,p)−B(q,q)]

− βPKw. (3.32)

Taking the inner product in L2 of (3.32) with Aw, yields

1

2

d

dt
‖w‖2H1 + ν|Aw|2L2 = −(B(w,p), Aw)L2 − (B(p,w), Aw)L2

− (B(w,w), Aw)L2 + (B(p,q), Aw)L2 + (B(q,p), Aw)L2 + (B(q,q), Aw)L2

− β‖PKw‖2H1 . (3.33)

Now we estimate the terms in the right-hand side of (3.33).
Using (2.6) and (2.12), we obtain that

|(B(w,p), Aw)L2 | ≤ cBM1‖w‖H1 |Aw|L2

[
1 + log

(
|Aw|L2

λ
1/2
1 ‖w‖H1

)]1/2
, (3.34)

|(B(w,w), Aw)L2 | ≤ cB‖w‖2H1 |Aw|L2

[
1 + log

(
|Aw|L2

λ
1/2
1 ‖w‖H1

)]1/2
. (3.35)

Thanks to (2.6), (2.12) and (2.14), we have

|(B(p,q), Aw)L2 | ≤ cB‖p‖H1‖q‖H1 |Aw|L2

[
1 + log

(
|Ap|L2

λ
1/2
1 ‖p‖H1

)]1/2

≤ cBM1C1
L2
N

λ
1/2
N+1

|Aw|L2 ≤ ν

12
|Aw|2L2 + c

C2
1

ν

L4
N

λN+1
M2

1 . (3.36)
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From (2.7) and (2.14), it follows that

|(B(q,q), Aw)L2 | ≤ cT ‖q‖2H1 |Aw|L2

[
1 + log

(
|A3/2w|L2

λ
1/2
1 |Aw|L2

)]1/2

≤ cTC
2
1

L3
N

λN+1
|Aw|L2 ≤ ν

12
|Aw|2L2 + c

C4
1

ν

L6
N

λ2N+1

. (3.37)

From (2.8) and (2.12), we obtain that

|(B(p,w), Aw)L2 | ≤ cTM1‖w‖H1 |Aw|L2

[
1 + log

(
|Aw|L2

λ
1/2
1 ‖w‖H1

)]1/2
. (3.38)

Moreover, (2.8) and (2.14) imply

|(B(q,p), Aw)L2 | ≤ cT ‖q‖H1‖p‖H1 |Aw|L2

[
1 + log

(
|Ap|L2

λ
1/2
1 ‖p‖H1

)]1/2

≤ cTC1
L2
N

λ
1/2
N+1

M1|Aw|L2 ≤ ν

12
|Aw|2L2 + c2T

C2
1

ν

L4
N

λN+1
M2

1 . (3.39)

Also, observe that

− β‖PKw‖2H1 = −β‖w‖2H1 + β‖QKw‖2H1

≤ −β‖w‖2H1 +
β

λK+1
|Aw|2L2

≤ −β‖w‖2H1 +
ν

2
|Aw|2L2 , (3.40)

where in the last inequality we used hypothesis (3.27).
Plugging estimates (3.34)-(3.40) into (3.33), we obtain that

d

dt
‖w‖2H1 +

ν

2
|Aw|2L2 ≤ −β‖w‖2H1

+ cM1‖w‖H1 |Aw|L2

[
1 + log

(
|Aw|L2

λ
1/2
1 ‖w‖H1

)]1/2

+ c‖w‖2H1 |Aw|L2

[
1 + log

(
|Aw|L2

λ
1/2
1 ‖w‖H1

)]1/2
+ c

C4
1

ν

L6
N

λ2N+1

+ c
C2

1

ν

L4
N

λN+1
M2

1 .

(3.41)

Since vN ∈ C([t0,∞);V ) ([2, Theorem 5]) and

‖w(t0)‖H1 ≤ ‖PNv0‖H1 + ‖p(t0)‖H1 ≤ 2M1,

then there exists τ ∈ (t0,∞) such that

‖w(t)‖H1 ≤ 3M1, ∀t ∈ [t0, τ ].

Define

t̃ = sup

{
τ ∈ (t0,∞) : max

t∈[t0,τ ]
‖w(t)‖H1 ≤ 3M1

}
. (3.42)

Suppose that t̃ <∞.
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Then, from (3.41), we obtain that, for all t ∈ [t0, t̃],

d

dt
‖w‖2H1 +

ν

2
|Aw|2L2 ≤ −β‖w‖2H1

+ cM1‖w‖H1 |Aw|L2

[
1 + log

(
|Aw|L2

λ
1/2
1 ‖w‖H1

)]1/2
+ c

C4
1

ν

L6
N

λ2N+1

+ c
C2

1

ν

L4
N

λN+1
M2

1 .

(3.43)

Observe that

ν

4
|Aw|2L2 − cM1‖w‖H1 |Aw|L2

(
1 + log

(
|Aw|L2

λ
1/2
1 ‖w‖H1

))1/2

+
β

2
‖w‖2H1

=
νλ1
4

‖w‖2H1

[
|Aw|2L2

λ1‖w‖2H1

− c
M1

νλ
1/2
1

|Aw|L2

λ
1/2
1 ‖w‖H1

(
1 + log

( |Aw|2L2

λ1‖w‖2H1

))1/2

+
2β

νλ1

]
. (3.44)

Define

φ(r) = r2 − ρr(1 + log(r2))1/2 +B, r ≥ 1, (3.45)

where

ρ = c
M1

νλ
1/2
1

, B =
2β

νλ1
. (3.46)

Notice that

φ(r) =
r(φ̃(r2) +B) + ρ(1 + log(r2))1/2

r + ρ(1 + log(r2))1/2
, (3.47)

where

φ̃(r) = r − ρ2(1 + log r). (3.48)

One easily verifies that

min
r≥1

φ̃(r) ≥ −ρ2 log(ρ2). (3.49)

Thus, from (3.47) and (3.49), it follows that if

B ≥ ρ2 log(ρ2), (3.50)

then

φ(r) ≥ 0, ∀r ≥ 1. (3.51)

Now, by the definition of ρ and B in (3.46), we see that (3.50) follows from
hypothesis (3.26) on β.

Using the fact (3.51) with

r =
|Aw|L2

λ
1/2
1 ‖w‖H1

≥ 1,

we conclude that the right-hand side of (3.44) is non-negative. Thus, from (3.43),
it follows that

d

dt
‖w‖2H1 +

ν

4
|Aw|2L2 ≤ −β

2
‖w‖2H1 + c

C4
1

ν

L6
N

λ2N+1

+ c
C2

1

ν

L4
N

λN+1
M2

1 . (3.52)
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Ignoring the second term on the left-hand side of (3.52) and integrating from t0
to t ∈ [t0, t̃], we obtain that

‖w(t)‖2H1 ≤ ‖w(t0)‖2H1 e−
β
2 (t−t0)

+
c

β

[
C4

1

ν

L6
N

λ2N+1

+
C2

1

ν

L4
N

λN+1
M2

1

]
(1 − e−

β
2 (t−t0)). (3.53)

Notice that the functions

f1(x) =
(1 + log x)3

x2
, f2(x) =

(1 + log x)2

x

are both decreasing for x ≥ e. Since N ≥ K and, by hypotheses (3.25), (3.26) and
(3.27), we have

λN+1

λ1
≥ λK+1

λ1
≥ 2β

νλ1
≥ 2λm

λ1
≥ e,

it then follows that
L6
N

λ2N+1

≤ c
L6
m

λ2m
, (3.54)

and
L4
N

λN+1
≤ c

L4
m

λm
. (3.55)

Plugging (3.54) and (3.55) into (3.53) and using hypothesis (3.25) with a suitable
absolute constant c, we obtain that

‖w(t)‖2H1 ≤ ‖w(t0)‖2H1 e−
β
2 (t−t0) +4M2

1 (1− e−
β
2 (t−t0)) ≤ 4M2

1 , ∀t ∈ [t0, t̃].
(3.56)

Thus,

‖w(t)‖H1 ≤ 2M1, ∀t ∈ [t0, t̃]. (3.57)

In particular, ‖w(t̃)‖H1 ≤ 2M1, which, by the definition of t̃ and the fact that
w ∈ C([t0,∞);V ), contradicts the assumption that t̃ < ∞. Therefore, the above
argument implies

‖w(t)‖H1 ≤ 2M1, ∀t ≥ t0. (3.58)

�

Next, we present a technical lemma.

Lemma 3.1. Assume that y : [t0,∞) → [0,∞) is a continuous function satisfying

y(s) ≤ a e−b(s−t) y(t) + γ sup
t≤τ≤s

y(τ) + ε, ∀s ≥ t ≥ t0, (3.59)

with ε ≥ 0, a ≥ 0, b > 0 and γ ∈ (0, 1) such that

θ = a

(
e−

b
νλ1 +

γ

1− γ

)
< 1. (3.60)

Then,

y(t) ≤ a
θ(t−t0)νλ1−1

1− γ
y(t0) +

(
a

(1− θ)(1 − γ)
+ 1

)
ε

1− γ
, ∀t ≥ t0. (3.61)
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Proof. Taking the sup on both sides of (3.59) over s ∈ [t, t + (νλ1)
−1], it follows

that

sup
t≤s≤t+(νλ1)−1

y(s) ≤ ay(t) + γ sup
t≤τ≤t+(νλ1)−1

y(τ) + ε.

Thus,

sup
t≤τ≤t+(νλ1)−1

y(τ) ≤ a

1− γ
y(t) +

ε

1− γ
. (3.62)

Using (3.62) in (3.59) with s = t+ (νλ1)
−1, t ≥ t0, yields

y(t+ (νλ1)
−1) ≤ θy(t) +

ε

1− γ
, (3.63)

with θ as defined in (3.60).
For each n ∈ N, let tn = t0 + n(νλ1)

−1. Since (3.63) is valid for every t ≥ t0, in
particular,

y(tn) = y(tn−1 + (νλ1)
−1) ≤ θy(tn−1) +

ε

1− γ
, ∀n ∈ N. (3.64)

Hence, by induction, one has

y(tn) ≤ θny(t0) +
ε

(1− θ)(1 − γ)
, ∀n ∈ N. (3.65)

Using (3.65) in (3.62) with t = tn, it follows that

sup
tn≤s≤tn+1

y(s) ≤ a
θn

1− γ
y(t0) +

(
a

(1− θ)(1 − γ)
+ 1

)
ε

1− γ
. (3.66)

Notice that, for every t ∈ [tn, tn+1],

n = (tn+1 − t0)νλ1 − 1 ≥ (t− t0)νλ1 − 1. (3.67)

Since θ ∈ [0, 1), by hypothesis (3.60), it then follows from (3.66) and (3.67) that,
for every t ∈ [tn, tn+1],

y(t) ≤ sup
tn≤s≤tn+1

y(s) ≤ a
θ(t−t0)νλ1−1

1− γ
y(t0) +

(
a

(1− θ)(1 − γ)
+ 1

)
ε

1− γ
. (3.68)

Since (3.68) is valid for any n ∈ N, (3.61) follows. �

The following proposition is a direct consequence of the result proved in [25,
Lemma 1] (see also [48]).

Proposition 3.2. Let u be a solution of (1.1) satisfying (2.12)-(2.14), for every
t ≥ t0. Then, the following inequalities hold

|A−1PNB(p,q)|L2 , |A−1PNB(q,p)|L2 ≤ cM1LN‖q‖V ′ , (3.69)

|A−1PNB(q,q)|L2 ≤ cLN |q|2L2 . (3.70)

Using the results of Lemma 3.1 and Propositions 3.1 and 3.2, we can now obtain
a uniform in time estimate for |vN (t) − p(t)|L2 . The proof below follows similar
ideas to the proof of [25, Theorem 2]. We use the notation ‖ · ‖L(X) to denote
the operator norm in the space L(X), the space of bounded linear operators on a
Hilbert space X .
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Theorem 3.1. Let u be a solution of (1.1) satisfying (2.12)-(2.14), for every t ≥ t0.
Let v0 ∈ BV (M1), with M1 as in (2.12). For every N ∈ N, let vN be the unique
solution of (3.23) satisfying vN (t0) = PNv0. Fix α ∈ (1/2, 1) and consider m ∈ N

large enough such that

λm ≥ max




λ1 e

2
, c
C1

ν
L2
m, c

(
C2

1

νM1

)2/3

L2
m,

[
ccα

(
1 +

e−α

1− α

) |Ω|α− 1
2M1

ν

] 1
1−α



 ,

(3.71)
where cα is the constant from (2.9).

If β > 0 and K ∈ N are large enough such that

β ≥ max

{
νλm, c

M2
1

ν

[
1 + log

(
M1

νλ
1/2
1

)]}
(3.72)

and

λK+1 ≥ 2β

ν
, (3.73)

then, there exists θ = θ(β) ∈ [0, 1) and a constant C = C(ν, λ1, |g|L2) such that,
for every N ≥ K,

|vN (t)− p(t)|L2 ≤ cθ(t−t0)νλ1−1|vN (t0)− p(t0)|L2 + C
L4
N

λ
3/2
N+1

. (3.74)

Proof. Denote w = vN − p. Subtracting (3.29) from (3.23), yields

dw

dt
+ νAw = −PN [B(vN ,vN )−B(u,u)]− βPKw

= −PN [B(vN ,vN )−B(p,p)] + PNG− βPKw, (3.75)

where

G(t) = B(u(t),u(t)) −B(p(t),p(t)), ∀t ≥ t0. (3.76)

Using that PNw = w, we can also rewrite (3.75) as

dw

dt
+ [νAPN + βPK ]w = −PN [B(vN ,vN )−B(p,p)] + PNG. (3.77)

Using Duhamel’s formula, it follows that, for every s ≥ t ≥ t0,

|w(s)|L2 ≤ | e−(s−t)(νAPN+βPK) w(t)|L2

+

∫ s

t

∣∣∣e−(s−τ)(νAPN+βPK) PN [B(vN (τ),vN (τ)) −B(p(τ),p(τ))]
∣∣∣
L2

dτ

+

∫ s

t

∣∣∣e−(s−τ)(νAPN+βPK) PNG(τ)
∣∣∣
L2

dτ. (3.78)

We now estimate each term on the right-hand side of (3.78).
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Notice that, for every s ≥ t ≥ t0,

| e−(s−t)(νAPN+βPK) w(t)|L2 ≤
≤ (‖ e−(s−t)(νAPK+βPK) ‖L(PKH) + ‖ e−(s−t)νAPNQK ‖L(PNQKH))|w(t)|L2

=

[(
max

1≤j≤K
e−(s−t)(νλj+β)

)
+

(
max

K+1≤j≤N
e−(s−t)νλj

)]
|w(t)|L2

=
(
e−(s−t)(νλ1+β) +e−(s−t)(νλK+1)

)
|w(t)|L2

≤ 2 e−(s−t)β |w(t)|L2 , (3.79)

where in the last inequality we used that νλK+1 ≥ 2β, from hypothesis (3.73).
Using (2.9), we obtain that

∣∣∣e−(s−τ)(νAPN+βPK) PN [B(vN (τ),vN (τ)) −B(p(τ),p(τ))]
∣∣∣
L2

=
1

να

∣∣∣ναAα e−(s−τ)(νAPN+βPK)A−αPN [B(vN (τ),vN (τ)) −B(p(τ),p(τ))]
∣∣∣
L2

≤ cα
|Ω|α− 1

2

να
‖ναAα e−(s−τ)(νAPN+βPK) ‖L(PNH)‖vN (τ) + p(τ)‖H1 |w(τ)|L2 .

(3.80)

By Proposition 3.1, we have that

‖vN (τ) + p(τ)‖H1 ≤ 3M1, ∀τ ≥ t0, ∀N ≥ K. (3.81)

It then follows from (3.80) that

∣∣∣e−(s−τ)(νAPN+βPK) PN [B(vN (τ),vN (τ)) −B(p(τ),p(τ))]
∣∣∣
L2

≤ 3cα
|Ω|α− 1

2M1

να
‖ναAα e−(s−τ)(νAPN+βPK) ‖L(PNH)|w(τ)|L2 . (3.82)

Notice that, by using hypotheses (3.72) and (3.73), we have

νλK+1

2
≥ β ≥ νλm, (3.83)

which implies in particular that K ≥ m.
Now, we write

e−(s−τ)(νAPN+βPK) = e−(s−τ)(νAPm+βPm) +e−(s−τ)(νAPKQm+βPKQm)

+ e−(s−τ)νAPNQK . (3.84)



20 C. F. MONDAINI AND E. S. TITI

Therefore,

∫ s

t

∣∣∣e−(s−τ)(νAPN+βPK) PN [B(vN (τ),vN (τ)) −B(p(τ),p(τ))]
∣∣∣
L2

dτ

≤ 3cα
|Ω|α− 1

2M1

να

(
sup
t≤τ≤s

|w(τ)|L2

)∫ s

t

‖ναAα e−(s−τ)(νAPN+βPK) ‖L(PNH)dτ

≤ 3cα
|Ω|α− 1

2M1

να

(
sup
t≤τ≤s

|w(τ)|L2

)(∫ s

t

‖ναAα e−(ξ−t)(νAPm+βPm) ‖L(PmH)dξ+

+

∫ s

t

‖ναAα e−(ξ−t)(νAPKQm+βPKQm) ‖L(PKH)dξ

+

∫ s

t

‖ναAα e−(ξ−t)νAPNQK ‖L(PNQKH)dξ

)
, (3.85)

where in the second inequality we used (3.84) and applied the change of variables
ξ = s− τ + t.

Notice that

‖ναAα e−(ξ−t)(νAPm+βPm) ‖L(PmH) = max
1≤j≤m

(νλj)
α e−(ξ−t)(νλj+β)

≤ e−(ξ−t)β max
νλ1≤x≤νλm

xα e−(ξ−t)x

= e−(ξ−t)β ·





(νλm)α e−(ξ−t)νλm , if ξ < t+ α
νλm

,

αα

(ξ − t)α
e−α, if t+ α

νλm
≤ ξ ≤ t+ α

νλ1
,

(νλ1)
α e−(ξ−t)νλ1 , if ξ > t+ α

νλ1
.

(3.86)

Let us decompose [t, s] as the union of the intervals

I1 =

[
t, t+

α

νλm

]
∩ [t, s], I2 =

[
t+

α

νλm
, t+

α

νλ1

]
∩ [t, s],

I3 =

[
t+

α

νλ1
,∞
)
∩ [t, s]. (3.87)

We then have
∫

I1

‖ναAα e−(ξ−t)(νAPm+βPm) ‖L(PmH)dξ ≤

≤
∫ t+ α

νλm

t

(νλm)α e−(ξ−t)(νλm+β) dξ =
(νλm)α

νλm + β
(1 − e−α e−

αβ
νλm ), (3.88)

∫

I2

‖ναAα e−(ξ−t)(νAPm+βPm) ‖L(PmH)dξ ≤

≤
∫ t+ α

νλ1

t+ α
νλm

αα

(ξ − t)α
e−α e−(ξ−t)β dξ ≤ (νλm)α e−α

∫ t+ α
νλ1

t+ α
νλm

e−(ξ−t)β dξ

=
(νλm)α e−α

β
(e−

αβ
νλm − e−

αβ
νλ1 ) (3.89)
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and
∫

I3

‖ναAα e−(ξ−t)(νAPm+βPm) ‖L(PmH)dξ ≤
∫ ∞

t+ α
νλ1

(νλ1)
α e−(ξ−t)(νλ1+β) dξ

=
(νλ1)

α

νλ1 + β
e−α e−

αβ
νλ1 . (3.90)

Notice that the estimate in (3.90) is smaller than the absolute value of the
negative term in (3.89). Thus, from (3.88)-(3.90), it follows that

∫ s

t

‖ναAα e−(ξ−t)(νAPm+βPm) ‖L(PmH)dξ ≤

≤ (νλm)α

νλm + β
(1− e−α e−

αβ
νλm ) +

(νλm)α

β
e−α e−

αβ
νλm ≤ (νλm)α

β
. (3.91)

Now, similarly as in (3.86), we have that

‖ναAα e−(ξ−t)(νAPKQm+βPKQm) ‖L(PKQmH) ≤

≤ e−(ξ−t)β ·





(νλK)α e−(ξ−t)νλK , if ξ < t+ α
νλK

,

αα

(ξ − t)α
e−α, if t+ α

νλK
≤ ξ ≤ t+ α

νλm+1
,

(νλm+1)
α e−(ξ−t)νλm+1 , if ξ > t+ α

νλm+1
.

(3.92)

We decompose [t, s] as the union of the intervals

J1 =

[
t, t+

α

νλK

]
∩ [t, s], J2 =

[
t+

α

νλK
, t+

α

νλm+1

]
∩ [t, s],

J3 =

[
t+

α

νλm+1
,∞
)
∩ [t, s]. (3.93)

We have
∫

J1

‖ναAα e−(ξ−t)(νAPKQm+βPKQm) ‖L(PKQmH)dξ ≤

≤
∫ t+ α

νλK

t

(νλK)α e−(ξ−t)νλK dξ =
1− e−α

(νλK)1−α
, (3.94)

∫

J2

‖ναAα e−(ξ−t)(νAPKQm+βPKQm) ‖L(PKQmH)dξ ≤

≤
∫ t+ α

νλm+1

t+ α
νλK

αα

(ξ − t)α
e−α dξ =

α e−α

1 − α

(
1

(νλm+1)1−α
− 1

(νλK)1−α

)
(3.95)

and
∫

J3

‖ναAα e−(ξ−t)(νAPKQm+βPKQm) ‖L(PKQmH)dξ ≤

≤
∫ ∞

t+ α
νλm+1

(νλm+1)
α e−(ξ−t)νλm+1 dξ =

e−α

(νλm+1)1−α
. (3.96)
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Thus, summing up (3.94)-(3.96), we obtain
∫ s

t

‖ναAα e−(ξ−t)(νAPKQm+βPKQm) ‖L(PKQmH)dξ ≤

≤ 1− e−α

(νλK)1−α
+
α e−α

1 − α

(
1

(νλm+1)1−α
− 1

(νλK)1−α

)
+

e−α

(νλm+1)1−α

=

(
1− e−α

1− α

)
1

(νλK)1−α
+

e−α

1− α

1

(νλm+1)1−α

<

(
e−α

1− α

)
1

(νλm+1)1−α
, (3.97)

where in the last inequality we used the fact that

1− e−α

1− α
< 0, ∀α > 0. (3.98)

Moreover, analogously to (3.92)-(3.97), one obtains that
∫ s

t

‖ναAα e−(ξ−t)νAPNQK ‖L(PNQKH)dξ <

(
e−α

1− α

)
1

(νλK+1)1−α
. (3.99)

Now, let us estimate the third term on the right-hand side of (3.78).
Notice that
∫ s

t

∣∣∣e−(s−τ)(νAPN+βPK) PNG(τ)
∣∣∣
L2

dτ =

=
1

ν

∫ s

t

∣∣∣νA e−(s−τ)(νAPN+βPK)A−1PNG(τ)
∣∣∣
L2

dτ ≤

≤ 1

ν

∫ s

t

‖νA e−(s−τ)(νAPN+βPK) ‖L(PNH)|A−1PNG(τ)|L2dτ. (3.100)

By Proposition 3.2, it follows that

|A−1PNG|L2 ≤ cM1LN‖q‖V ′ + cLN |q|2L2 ≤ cM1LN
|q|L2

λ
1/2
N+1

+ cLN |q|2L2 . (3.101)

Then, using (2.13), yields
|A−1PNG|L2 ≤ cCN , (3.102)

where

CN = C0
L2
N

λ
3/2
N+1

(
M1 + C0

LN

λ
1/2
N+1

)
, (3.103)

with C0 as defined in (2.16).
Now, similarly as in (3.86)-(3.91), one obtains that
∫ s

t

‖νA e−(s−τ)(νAPN+βPK) ‖L(PNH)dτ

=

∫ s

t

‖νA e−(ξ−t)(νAPN+βPK) ‖L(PNH)dξ

≤ νλN
νλN + β

(1− e−1 e
− β
νλN ) + log

(
λN
λ1

)
e−1 e

− β
νλN +

νλ1
νλ1 + β

e−1 e−
β
νλ1

≤ 1 + log

(
λN
λ1

)
= L2

N . (3.104)
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Hence, from (3.100), (3.102) and (3.104), we have

∫ s

t

∣∣∣e−(s−τ)(νAPN+βPK) PNG(τ)
∣∣∣
L2

dτ ≤ c
CNL

2
N

ν
, (3.105)

with CN as defined in (3.103).
Now, plugging estimates (3.79), (3.85), (3.91), (3.97), (3.99) and (3.105) into

(3.78), we obtain that, for all s ≥ t ≥ t0,

|w(s)|L2 ≤ 2 e−(s−t)β |w(t)|L2+

+ 3cα
|Ω|α− 1

2M1

να

(
sup
t≤τ≤s

|w(τ)|L2

)[
(νλm)α

β
+

e−α

1− α

1

(νλm+1)1−α
+

+
e−α

1− α

1

(νλK+1)1−α

]
+ c

CNL
2
N

ν
. (3.106)

Since K ≥ m (cf. (3.83)), we have that

(νλm)α

β
+

e−α

1− α

1

(νλm+1)1−α
+

e−α

1− α

1

(νλK+1)1−α
≤
(
1 + 2

e−α

1− α

)
1

(νλm)1−α

(3.107)
Hence, from (3.106), we obtain that

|w(s)|L2 ≤ 2 e−(s−t)β |w(t)|L2+

+ ccα

(
1 +

e−α

1− α

) |Ω|α− 1
2M1

νλ1−αm

sup
t≤τ≤s

|w(τ)|L2 + c
CNL

2
N

ν
. (3.108)

Let

γ = ccα

(
1 +

e−α

1− α

) |Ω|α− 1
2M1

νλ1−αm

(3.109)

and

θ = 2

(
e−

β
νλ1 +

γ

1− γ

)
.

Using hypothesis (3.71) with a suitable absolute constant c and also hypothesis
(3.72), we obtain that γ < 1 and θ < 1. Therefore, (3.74) follows from (3.108)
and Lemma 3.1 with y = |w(·)|L2 , a = 2, b = β, γ given in (3.109) and ε =
cCNL

2
N/ν. �

Remark 3.2. We notice that, by using an explicit form of the constant cα from
(2.9) (see, e.g., [4, 36, 41]), one could obtain an optimal choice of α by minimizing
the coefficient of supt≤τ≤s |w(τ)|L2 in (3.108) with respect to α. Thus, in this
case, the values of γ, θ, and the condition (3.71) on λm would be given explicitly in
terms of this optimal value of α. However, we chose not to deal with these technical
details here.

With the result of Theorem 3.1, we can obtain an estimate for the error com-
mitted when applying the standard Galerkin method to (1.2) in order to obtain
an approximation of the reference solution u of (1.1). The proof follows as in
(3.20)-(3.21).
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Corollary 3.1. Assume the hypotheses from Theorem 3.1. Then, there exists T =
T (ν, λ1, |g|L2 , N) ≥ t0 such that, for every N ≥ K,

sup
t≥T

|vN (t)− u(t)|L2 ≤ C
LN
λN+1

, (3.110)

and

sup
t≥T

‖vN(t)− u(t)‖H1 ≤ C
LN

λ
1/2
N+1

, (3.111)

where C is a constant depending on ν, λ1 and |g|L2 , but independent of N .

Finally, we now state the result about the error associated with the Postprocess-
ing Galerkin method applied to (3.22), relative to the reference solution u. Com-
pared to the result from Corollary 3.1, the estimates show that the Postprocessing
Galerkin method has a better convergence rate than the standard Galerkin method.
The proof follows immediately from the result of Theorem 3.1 and (3.6)-(3.8).

Theorem 3.2. Assume the hypotheses from Theorem 3.1, with u satisfying, in ad-
dition, (2.18) and (2.19), for every t ≥ t0. Then, there exists T = T (ν, λ1, |g|L2 , N) ≥
t0 such that, for every N ≥ K,

sup
t≥T

|[vN (t) + Φ1(vN (t))] − u(t)|L2 ≤ C
L4
N

λ
3/2
N+1

, (3.112)

and

sup
t≥T

‖[vN (t) + Φ1(vN (t))]− u(t)‖H1 ≤ C
L4
N

λN+1
, (3.113)

where C is a constant depending on ν, λ1 and |g|L2 , but independent of N .

3.2. A general class of interpolant operators. We now consider the class of
linear interpolant operators Ih : L2(Ω)2 → L2(Ω)2 satisfying the following proper-
ties:

(P1) There exists a positive constant c0 such that

|ϕ− Ih(ϕ)|L2 ≤ c0h‖ϕ‖H1 , ∀ϕ ∈ H1(Ω)2. (3.114)

(P2) There exists a positive constant c−1 such that

‖ϕ− Ih(ϕ)‖H−1 ≤ c−1h|ϕ|L2 , ∀ϕ ∈ L2(Ω)2. (3.115)

(P3) There exists a positive constant c̃0 such that

|Ih(q)|L2 ≤ c̃0
|Ω|3/4

h2λ
1/4
N+1

|q|L2 , ∀q ∈ QNH. (3.116)

As one easily verifies, the example of interpolant operator given by the low
Fourier modes projector PK , N ≥ K, considered in subsection 3.1, satisfies proper-
ties (P1)-(P3). In particular, property (P3) is immediately verified, since Ih(q) =
PKq = 0. Indeed, the only reason for assuming property (P3) is that, as will
be clearer in the proof of Theorem 3.3, we do not assume PσIh to commute with
A, a property that PK satisfies. This is the key difference between the proofs of
Theorems 3.1 and 3.3.

A more physically interesting example of operator Ih satisfying properties (P1)-
(P3) is given by local averages over finite volume elements. For illustrational pur-
poses, this is proved in the Appendix.
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The next results follow a similar outline from the ones in subsection 3.1. We
again assume either periodic or no-slip Dirichlet boundary conditions. As before,
we start by obtaining a uniform estimate of the V norm of vN − p.

Proposition 3.3. Let u be a solution of (1.1) satisfying (2.12)-(2.14), for every
t ≥ t0. Let v0 ∈ BV (M1), with M1 as in (2.12). For every N ∈ N, let vN be the
unique solution of (3.23) satisfying vN (t0) = PNv0. Consider m ∈ N large enough
such that

λm ≥ max

{
λ1 e

2
, c
C1

ν
L2
m, c

(
C2

1

νM1

)2/3

L2
m, c

(
C1

M1

)2

L2
m

}
. (3.117)

If β > 0 is large enough such that

β ≥ max

{
νλm, c

M2
1

ν

[
1 + log

(
M1

νλ
1/2
1

)]}
(3.118)

and if h is small enough such that

h ≤ 1

c0

(
ν

β

)1/2

, (3.119)

where c0 is the constant from (3.114), then, for every N ≥ m, we have

sup
t≥t0

‖vN (t)− p(t)‖H1 ≤ 2M1. (3.120)

Proof. Denote w = vN − p. Subtracting (3.29) from (1.4), we obtain that

dw

dt
+ νAw + PN [B(vN ,vN )−B(u,u)] = −βPNIh(vN − u). (3.121)

As in (3.31), we rewrite

B(vN ,vN )−B(u,u) =

= B(w,p) +B(p,w) +B(w,w)−B(p,q) −B(q,p)−B(q,q). (3.122)

Moreover,

− βPN Ih(vN − u) = −βPNIh(w) + βPN Ih(q)

= −βPNIh(w) + βPN [Ih(q) − q]. (3.123)

Thus, from (3.121)-(3.123), we have

dw

dt
+ νAw = −PN [B(w,p)+B(p,w)+B(w,w)−B(p,q)−B(q,p)−B(q,q)]

− βPN Ih(w) + βPN [Ih(q)− q]. (3.124)

Taking the inner product in L2 of (3.124) with Aw, yields

1

2

d

dt
‖w‖2H1+ν|Aw|2L2 = −(B(w,p), Aw)L2−(B(p,w), Aw)L2−(B(w,w), Aw)L2

+ (B(p,q), Aw)L2 + (B(q,p), Aw)L2 + (B(q,q), Aw)L2

− β‖w‖2H1 + β(w − Ih(w), Aw)L2 − β(q− Ih(q), Aw)L2 . (3.125)
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Using property (P1) of Ih, we have

|β(w − Ihw, Aw)L2 | ≤ c0βh‖w‖H1 |Aw|L2

≤ β

2
‖w‖2H1 +

c20βh
2

2
|Aw|2L2

≤ β

2
‖w‖2H1 +

ν

2
|Aw|2L2 , (3.126)

where in the last inequality we used hypothesis (3.119).
Now, using property (P1) of Ih and (2.14), we have

|β(q− Ih(q), Aw)L2 | ≤ c0βh‖q‖H1 |Aw|L2

≤ β‖q‖2H1 +
c20βh

2

4
|Aw|2L2

≤ βC2
1

L2
N

λN+1
+
ν

4
|Aw|2L2 . (3.127)

Using, in (3.125), estimates (3.126), (3.127) and analogous estimates to (3.34)-
(3.39), we obtain that

d

dt
‖w‖2H1 +

ν

4
|Aw|2L2 ≤ −β‖w‖2H1

+ cM1‖w‖H1 |Aw|L2

[
1 + log

(
|Aw|L2

λ
1/2
1 ‖w‖H1

)]1/2

+ c‖w‖2H1 |Aw|L2

[
1 + log

(
|Aw|L2

λ
1/2
1 ‖w‖H1

)]1/2
+ c

C4
1

ν

L6
N

λ2N+1

+ c
C2

1

ν

L4
N

λN+1
M2

1 + βC2
1

L2
N

λN+1
. (3.128)

Proceeding analogously as in the proof of Proposition 3.1, we obtain that

d

dt
‖w‖2H1 ≤ −β

2
‖w‖2H1 + c

C4
1

ν

L6
N

λ2N+1

+ c
C2

1

ν

L4
N

λN+1
M2

1 + βC2
1

L2
N

λN+1
, (3.129)

for all t ∈ [t0, t̃], with t̃ defined as in (3.42).
Integrating (3.129) with respect to time from t0 to t ∈ [t0, t̃], we have

‖w(t)‖2H1 ≤ ‖w(t0)‖2H1 e−
β
2 (t−t0)

+
c

β

[
C4

1

ν

L6
N

λ2N+1

+
C2

1

ν

L4
N

λN+1
M2

1 + βC2
1

L2
N

λN+1

]
(1− e−

β
2 (t−t0)). (3.130)

Using hypothesis (3.118) with a suitable absolute constant c and similar argu-
ments to the ones used in the proof of Proposition 3.1, one obtains that

c

β

[
C4

1

ν

L6
N

λ2N+1

+
C2

1

ν

L4
N

λN+1
M2

1 + βC2
1

L2
N

λN+1

]
≤

≤ c

β

[
C4

1

ν

L6
m

λ2m
+
C2

1

ν

L4
m

λm
M2

1 + βC2
1

L2
m

λm

]
≤ 4M2

1 . (3.131)
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Using the fact that ‖w(t0)‖H1 ≤ 2M1 and inequality (3.131) in (3.130), it follows
that

‖w(t)‖H1 ≤ 2M1, ∀t ∈ [t0, t̃],

which, by the definition of t̃ in (3.42) and the fact that w ∈ C([t0,∞), V ), actually
implies that

‖w(t)‖H1 ≤ 2M1, ∀t ≥ t0.

�

Using the results of Proposition 3.3, Lemma 3.1 and Proposition 3.2, we can now
obtain a uniform estimate in time of |vN − p|L2 .

Theorem 3.3. Let u be a solution of (1.1) satisfying (2.12)-(2.14), for every t ≥ t0.
Let v0 ∈ BV (M1), with M1 as in (2.12). For every N ∈ N, let vN be the unique
solution of (3.23) satisfying vN (t0) = PNv0. Fix α ∈ (1/2, 1) and consider m ∈ N

large enough such that

λm ≥ max

{
λ1 e

2
, c
C1

ν
L2
m, c

(
C2

1

νM1

)2/3

L2
m, c

(
C1

M1

)2

L2
m,

[
ccα

(
1 +

e−α

1− α

) |Ω|α− 1
2M1

ν

] 1
1−α




 , (3.132)

where cα is the constant from (2.9).
If β > 0 is large enough such that

β ≥ max

{
νλm, c

M2
1

ν

[
1 + log

(
M1

νλ
1/2
1

)]}
(3.133)

and if h ≥ 0 is small enough such that

h ≤ cmin

{(
ν

β

)1/2

,
νλ

1/2
m

β

}
, (3.134)

then, there exists θ = θ(β) ∈ [0, 1) and a constant C = C(ν, λ1, |g|L2 , 1/h2) such
that, for every N ≥ m, we have

|vN (t)− p(t)|L2 ≤ cθ(t−t0)νλ1−1|vN (t0)− p(t0)|L2 + C
LN

λ
5/4
N+1

. (3.135)

Proof. We recall equation (3.12) satisfied by w = vN − p:

dw

dt
+ [νAPN + βPN ]w = −PN [B(vN ,vN )−B(p,p)] + PNG

− βPNPσ[Ih(w) −w] + βPNPσIh(q), (3.136)

where

G(t) = B(u(t),u(t)) −B(p(t),p(t)), ∀t ≥ t0. (3.137)
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Using Duhamel’s formula, it follows that

|w(t)|L2 ≤ | e−(t−t0)(νAPN+βPN ) w(t0)|L2

+

∫ t

t0

∣∣∣e−(t−τ)(νAPN+βPN ) PN [B(vN (τ),vN (τ)) −B(p(τ),p(τ))]
∣∣∣
L2

dτ

+

∫ t

t0

∣∣∣e−(t−τ)(νAPN+βPN ) PNG(τ)
∣∣∣
L2

dτ

+ β

∫ t

t0

∣∣∣e−(t−τ)(νAPN+βPN ) PNPσ[Ih(w(τ)) −w(τ)]
∣∣∣
L2

dτ

+ β

∫ t

t0

∣∣∣e−(t−τ)(νAPN+βPN ) PNPσIh(q(τ))
∣∣∣
L2

dτ. (3.138)

The estimates for the first three terms in the right-hand side of (3.138) now
follow by writing

e−(t−τ)(νAPN+βPN ) = e−(t−τ)(νAPm+βPm) +e−(t−τ)(νAPNQm+βPNQm) (3.139)

and proceeding analogously as in the proof of Theorem 3.1, so that

| e−(t−t0)(νAPN+βPN ) w(t0)|L2 ≤ e−(t−t0)(νλ1+β) |w(t0)|L2 ; (3.140)

∫ t

t0

∣∣∣e−(t−τ)(νAPN+βPN ) PN [B(vN (τ),vN (τ)) −B(p(τ),p(τ))]
∣∣∣
L2

dτ ≤

≤ 3cα
|Ω|α− 1

2M1

να
sup
τ≥t0

|w(τ)|L2

(
(νλm)α

β
+

e−α

1− α

1

(νλm+1)1−α

)
, (3.141)

where we used Proposition 3.3; and
∫ t

t0

∣∣∣e−(t−τ)(νAPN+βPN ) PNG(τ)
∣∣∣
L2

dτ ≤ c
CNL

2
N

ν
, (3.142)

with CN given by

CN = C0
L2
N

λ
3/2
N+1

(
M1 + C0

LN

λ
1/2
N+1

)
, (3.143)

where C0 is defined in (2.16).
In order to estimate the fourth term on the right-hand side of (3.138), we use

property (P2) of Ih and obtain that

β

∫ t

t0

∣∣∣e−(t−τ)(νAPN+βPN ) PNPσ[Ih(w(τ)) −w(τ)]
∣∣∣
L2

dτ

≤ β

ν1/2

∫ t

t0

‖ν1/2A1/2 e−(t−τ)(νAPN+βPN ) ‖L(PNH)|A−1/2Pσ[Ih(w)−w]|L2dτ

≤ c−1
βh

ν1/2
sup
τ≥t0

|w(τ)|L2

∫ t

t0

‖ν1/2A1/2 e−(s−t0)(νAPN+βPN ) ‖L(PNH)ds. (3.144)

Moreover, using again (3.139) and the calculations from the proof of Theorem
3.1, one obtains that
∫ t

t0

‖ν1/2A1/2 e−(s−t0)(νAPN+βPN ) ‖L(PNH)ds ≤
(νλm)

1
2

β
+ 2

e−
1
2

(νλm+1)
1
2

. (3.145)
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Thus, from (3.144),

β

∫ t

t0

∣∣∣e−(t−τ)(νAPN+βPN ) PN [PσIh(w(τ)) −w(τ)]
∣∣∣
L2

dτ

≤ c−1
βh

ν1/2

(
(νλm)

1
2

β
+ 2

e−
1
2

(νλm+1)
1
2

)
sup
τ≥t0

|w(τ)|L2 (3.146)

Finally, for the last term in the right-hand side of (3.138), we use property (P3)
of Ih and obtain that

β

∫ t

t0

∣∣∣e−(t−τ)(νAPN+βPN ) PNPσIh(q(τ))
∣∣∣
L2

dτ ≤

≤ c̃0
|Ω|3/4

h2λ
1/4
N+1

β

∫ t

t0

‖ e−(t−τ)(νAPN+βPN ) ‖L(PNH)|q(τ)|L2dτ. (3.147)

From (2.13), we have that

|q(τ)|L2 ≤ C0
LN
λN+1

. (3.148)

Thus, from (3.147),

β

∫ t

t0

∣∣∣e−(t−τ)(νAPN+βPN ) PNPσIh(q(τ))
∣∣∣
L2

dτ ≤

≤ c̃0
C0|Ω|3/4β

h2
LN

λ
5/4
N+1

∫ t

t0

‖ e−(t−τ)(νAPN+βPN ) ‖L(PNH)dτ. (3.149)

Since
∫ t

t0

‖ e−(t−τ)(νAPN+βPN ) ‖L(PNH)dτ =

∫ t

t0

max
1≤j≤N

e−(t−τ)(νλj+β) dτ

=

∫ t

t0

e−(t−τ)(νλ1+β) dτ =
1− e−(t−t0)(νλ1+β)

νλ1 + β
≤ 1

β
, (3.150)

then, from (3.149),

β

∫ t

t0

∣∣∣e−(t−τ)(νAPN+βPN ) PNPσIh(q(τ))
∣∣∣
L2

dτ ≤ c̃0
C0|Ω|3/4

h2
LN

λ
5/4
N+1

. (3.151)

Now, using estimates (3.140)-(3.142), (3.146) and (3.151) in (3.138), we obtain
that

|w(t)|L2 ≤ e−(t−t0)(νλ1+β) |w(t0)|L2+

+

[
3cα

|Ω|α− 1
2M1

να

(
(νλm)α

β
+

e−α

1− α

1

(νλm+1)1−α

)

+c−1
βh

ν1/2

(
(νλm)

1
2

β
+ 2

e−
1
2

(νλm+1)
1
2

)]
sup
τ≥t0

|w(τ)|L2 + c
CNL

2
N

ν

+ c̃0
C0|Ω|3/4

h2
LN

λ
5/4
N+1

. (3.152)
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Hence, using that β ≥ νλm and the definition of CN in (3.143),

|w(t)|L2 ≤ e−(t−t0)(νλ1+β) |w(t0)|L2+

+

[
ccα

(
1 +

e−α

1− α

) |Ω|α− 1
2M1

νλ1−αm

+ c−1
βh

νλ
1/2
m

]
sup
τ≥t0

|w(τ)|L2 + C
LN

λ
5/4
N+1

. (3.153)

Using hypotheses (3.132) and (3.134) with suitable absolute constants c, we
obtain that

γ = ccα

(
1 +

e−α

1− α

) |Ω|α− 1
2M1

νλ1−αm

+ c−1
βh

νλ
1/2
m

< 1 (3.154)

and

θ = e−
νλ1+β

νλ1 +
γ

1− γ
< 1. (3.155)

Therefore, (3.135) follows from (3.153) and Lemma 3.1 with a = 1, b = νλ1 + β,

γ as given in (3.154) and ε = CLN/λ
5/4
N+1. �

The result of Theorem 3.3 now yields, as in (3.20)-(3.21), an estimate of the error
associated to the Galerkin approximation of (1.2) relative to the reference solution
u of (1.1), in the general case of an interpolant operator satisfying properties (P1)-
(P3).

Corollary 3.2. Assume the hypotheses from Theorem 3.3. Then, there exists T =
T (ν, λ1, |g|L2 , N) ≥ t0 such that, for every N ≥ m,

sup
t≥T

|vN (t)− u(t)|L2 ≤ C
LN
λN+1

, (3.156)

and

sup
t≥T

‖vN(t)− u(t)‖H1 ≤ C
LN

λ
1/2
N+1

, (3.157)

where C is a constant depending on ν, λ1, |g|L2 and 1/h2, but independent of N .

Finally, we now obtain an estimate of the error committed when applying the
Postprocessing Galerkin method to system (1.2), in order to obtain an approxi-
mation of the reference solution u of (1.1), in the case of an interpolant operator
satisfying properties (P1)-(P3). The result shows that the convergence rate of the
Postprocessing Galerkin method in this case, although not as good as the one ob-
tained in Theorem 3.2, is still better than the convergence rate of the standard
Galerkin method. The proof follows immediately from the result of Theorem 3.3
and (3.6)-(3.8).

Theorem 3.4. Assume the hypotheses from Theorem 3.3, with u satisfying, in ad-
dition, (2.18) and (2.19), for every t ≥ t0. Then, there exists T = T (ν, λ1, |g|L2 , N)
≥ t0 such that, for every N ≥ m,

sup
t≥T

|[vN (t) + Φ1(vN (t))] − u(t)|L2 ≤ C
LN

λ
5/4
N+1

, (3.158)

and

sup
t≥T

‖[vN (t) + Φ1(vN (t))]− u(t)‖H1 ≤ C
LN

λ
3/4
N+1

, (3.159)

where C is a constant depending on ν, λ1, |g|L2 and 1/h2, but independent of N .
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Remark 3.3. We emphasize that the main purpose of the postprocessing step
applied to the Galerkin method is to improve the accuracy of the numerical ap-
proximation of v, solution of (1.2), and thus u, solution of (1.1). The fact that
the numerical approximation of v given by the Postprocessing Galerkin method
yields a uniform in time error estimate is actually due to the fact that the Galerkin
approximation vN of v yields a uniform in time error estimate. Indeed, the latter
is valid for an even more general class of interpolant operators than the one con-
sidered in subsection 3.2. Namely, the family of operators Ih : H1(Ω)2 → L2(Ω)2

which are only required to satisfy property (P1); and also the family of operators
Ih : H2(Ω)2 → L2(Ω)2 satisfying (see [2])

‖ϕ− Ih(ϕ)‖H2 ≤ c1h‖ϕ‖H1 + c2h
2‖ϕ‖H2 ∀ϕ ∈ H2(Ω)2,

where c1 and c2 are positive constants, and ‖ · ‖H2 denotes the usual Sobolev norm
of the space H2(Ω)2. A physically relevant example of interpolant operator of this
latter type is given by measurements at a finite set of nodal points in Ω.

It is not difficult to show that (using, in particular, similar ideas from the proof
of Proposition 3.3), under the appropriate conditions on the parameters β and h
and for both types of interpolant operators, there exists T = T (ν, λ1, |g|L2 , N) ≥ t0
large enough such that

sup
t≥T

‖vN(t)− u(t)‖H1 ≤ C
L2
N

λ
1/2
N+1

,

where C is a constant depending on ν, λ1 and |g|L2 , but independent of N . More-
over, for the former class of interpolant operators, one can also show that

sup
t≥T

|vN (t)− u(t)|L2 ≤ C
LN
λN+1

,

where, again, T = T (ν, λ1, |g|L2 , N) ≥ t0 and C = C(ν, λ1, |g|L2).
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Appendix

The aim of this section is to show that the example of interpolant operator given
by local averages over finite volume elements (see, e.g., [23, 33, 34]), assuming pe-
riodic boundary conditions, satisfies properties (P1)-(P3) considered in subsection
3.2.

Let Ω = (0, L) × (0, L) ⊂ R
2 be a basic domain of periodicity, and consider a

partition of Ω into K squares with sides of length h = L/
√
K. Let

Λ = {(j, l) ∈ N
2 : 1 ≤ j, l ≤

√
K}

and, for every α = (j, l) ∈ Λ, let Qα be the volume element given by the square

Qα = [(j − 1)h, jh)× [(l − 1)h, lh).
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Consider the interpolant operator Ih : L2(Ω)2 → L2(Ω)2 given by

Ih(ϕ) =
∑

α∈Λ

ϕαχQα , ∀ϕ ∈ L2(Ω)2, (A.1)

where ϕα is the local average of ϕ over the volume element Qα, i.e.

ϕα =
1

|Qα|

∫

Qα

ϕ(y)dy. (A.2)

The fact that Ih defined in (A.1) satisfies property (P1) follows from the calcu-
lations in [33, Appendix]. Thus, it only remains to verify properties (P2) and (P3).
In fact, we show that this particular example of Ih sastisfies a stronger property
than (P3), with respect to the (L∞(Ω))2-norm.

Notice that, in the present case, |Ω| = L2.

Proposition A.1. Let Ih : L2(Ω)2 → L2(Ω)2 be the operator defined by (A.1).
Then, it holds:

(i) There exists a positive constant c−1 such that

‖ϕ− Ih(ϕ)‖H−1 ≤ c−1h|ϕ|L2 , ∀ϕ ∈ L2(Ω)2. (A.3)

(ii) There exists a positive constant c̃0 such that

‖Ih(q)‖L∞ ≤ c
L1/2

h2λ
1/4
N+1

|q|L2 , ∀q ∈ QNH. (A.4)

Consequently,

|Ih(q)|L2 ≤ c̃0
L3/2

h2λ
1/4
N+1

|q|L2 , ∀q ∈ QNH. (A.5)

Proof. From its definition, it follows immediately that Ih is a symmetric operator,
i.e.

(Ih(ϕ), ψ) = (ϕ, Ih(ψ)), ∀ψ ∈ L2(Ω)2. (A.6)

Thus, using (A.6) and property (P1), we obtain that

‖ϕ− Ih(ϕ)‖H−1 = sup
ψ∈H1

0 (Ω)2

‖ψ‖
H1=1

|(ϕ− Ih(ϕ), ψ)| = sup
ψ∈H1

0 (Ω)2

‖ψ‖
H1=1

|(ϕ, ψ − Ih(ψ))|

≤ sup
ψ∈H1

0
(Ω)2

‖ψ‖
H1=1

c0h|ϕ|L2‖ψ‖H1 = c0h|ϕ|L2 , (A.7)

which proves that (i) is satisfied with c−1 = c0.
Now let us prove (ii). Let q ∈ QNH and consider its Fourier expansion, given

by

q(y) =
∑

|k|≥κN

ûk e
2πi k

L
·y, ∀y ∈ Ω, (A.8)

where

κN =
L

2π
λ
1/2
N+1. (A.9)

From (A.8) and the definition of Ih in (A.1), we have that

Ih(q)(x) =
∑

α∈Λ

∑

|k|≥κN

1

|Qα|
ûk

(∫

Qα

e2πi
k
L
·y dy

)
χQα(x).
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Thus,

|Ih(q)(x)| ≤
∑

α∈Λ

∑

|k|≥κN

1

|Qα|
|ûk|

∣∣∣∣
∫

Qα

e2πi
k
L
·y dy

∣∣∣∣χQα(x) = (S1 + S2 + S3)(x),

(A.10)
where

S1(x) =
∑

α∈Λ

∑

|k|≥κN
k1=0

1

|Qα|
|ûk|

∣∣∣∣
∫

Qα

e2πi
k
L
·y dy

∣∣∣∣χQα(x),

S2(x) =
∑

α∈Λ

∑

|k|≥κN
k2=0

1

|Qα|
|ûk|

∣∣∣∣
∫

Qα

e2πi
k
L
·y dy

∣∣∣∣χQα(x),

S3(x) =
∑

α∈Λ

∑

|k|≥κN
k1 6=0,k2 6=0

1

|Qα|
|ûk|

∣∣∣∣
∫

Qα

e2πi
k
L
·y dy

∣∣∣∣χQα(x).

Notice that

S1(x) =
∑

α∈Λ

∑

|k|≥κN
k1=0

1

|Qα|
|ûk|

∣∣∣∣∣

∫ lh

(l−1)h

∫ jh

(j−1)h

e2πi
k2
L
y2 dy1dy2

∣∣∣∣∣χQα(x)

=
∑

α∈Λ

∑

|k|≥κN
k1=0

1

h2
|ûk|h

∣∣∣∣
L

2πik2
e2πi

k2
L
lh(1 − e−2πi

k2
L
h)

∣∣∣∣χQα(x)

≤ L

πh

∑

|k|≥κN
k1=0

|ûk|
1

|k2|

(
∑

α∈Λ

χQα(x)

)
=

L

πh

∑

|k|≥κN
k1=0

|ûk|
1

|k2|

≤ L

πh



∑

|k|≥κN
k1=0

|ûk|2




1/2

∑

|k|≥κN
k1=0

1

|k2|2




1/2

≤ L

πh

|q|L2

|Ω|1/2



∑

|k|≥κN
k1=0

1

|k2|2




1/2

=
1

πh
|q|L2



∑

|k|≥κN
k1=0

1

|k2|2




1/2

≤ c

h
|q|L2

1

κ
1/2
N

≤ c

hL1/2
|q|L2

1

λ
1/4
N+1

. (A.11)

Analogously,

S2(x) ≤
c

hL1/2
|q|L2

1

λ
1/4
N+1

. (A.12)
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Moreover,

S3(x) =
∑

α∈Λ

∑

|k|≥κN
k1=0

1

|Qα|
|ûk|

∣∣∣∣∣

∫ lh

(l−1)h

∫ jh

(j−1)h

e2πi
k1
L
y1 e2πi

k2
L
y2 dy1dy2

∣∣∣∣∣χQα(x)

≤ L2

π2h2

∑

|k|≥κN
k1 6=0,k2 6=0

|ûk|
1

|k1||k2|
≤ L2

π2h2
|q|L2

|Ω|1/2




∑

|k|≥κN
k1 6=0,k2 6=0

1

k21k
2
2




1/2

≤ L

π2h2
|q|L2




∑

|k1|≥
κN
2 ,|k2|≥1

1

k21k
2
2

+
∑

|k2|≥
κN
2 ,|k1|≥1

1

k21k
2
2



1/2

≤ L

π2h2
|q|L2






∑

|k1|≥
κN
2

1

k21





∑

|k2|≥1

1

k22


+




∑

|k2|≥
κN
2

1

k22





∑

|k1|≥1

1

k21





1/2

≤ c
L

h2
|q|L2

1

κ
1/2
N

≤ c
L1/2

h2
|q|L2

1

λ
1/4
N+1

. (A.13)

From (A.10)-(A.13), we obtain that

|Ih(q)(x)| ≤ c
L1/2

h2
|q|L2

1

λ
1/4
N+1

, ∀x ∈ Ω, (A.14)

which proves (A.4). �
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