Skip to main content
eScholarship
Open Access Publications from the University of California

Membrane lipid domains and dynamics as detected by Laurdan fluorescence

  • Author(s): Parasassi, T
  • Gratton, E
  • et al.
Abstract

2-Dimethylamino-6-lauroylnaphthalene (Laurdan) is a membrane probe of recent characterization, which shows high sensitivity to the polarity of its environment. Steady-state Laurdan excitation and emission spectra have different maxima and shape in the two phospholipid phases, due to differences in the polarity and in the amount of dipolar relaxation. In bilayers composed of a mixture of gel and liquid-crystalline phases, the properties of Laurdan excitation and emission spectra are intermediate between those obtained in the pure phases. These spectral properties are analyzed using the generalized polarization (GP). The GP value can be used for the quantitation of each phase. The wavelength dependence of the GP value is used to ascertain the coexistence of different phase domains in the bilayer. Moreover, by following the evolution of Laurdan emission vs. time after excitation, the kinetics of phase fluctuation in phospholipid vesicles composed of coexisting gel and liquid-crystalline phases was determined. GP measurements performed in several cell lines did not give indications of coexistence of phase domains in their membranes. In natural membranes, Laurdan parameters indicate a homogeneously fluid environment, with restricted molecular motion in comparison with the phospholipid liquid-crystalline phase. The influence of cholesterol on the phase properties of the two phospholipid phases is proposed to be the cause of the phase behavior observed in natural membranes. In bilayers composed of different phospholipids and various cholesterol concentrations, Laurdan response is very similar to that arising from cell membranes. In the absence of cholesterol, from the steady-state and time-resolved measurements of Laurdan in phospholipid vesicles, the condition for the occurrence of separate coexisting domains in the bilayer has been determined: the molecular ratio between the two phases must be in the range between 30% and 70%. Below and above this range, a single homogeneous phase is observed, with the properties of the more concentrated phase, slightly modified by the presence of the other. Moreover, in this concentration range, the calculated dimension of the domains is very small, between 20 and 50 Å. © 1995 Plenum Publishing Corporation.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View