Skip to main content
eScholarship
Open Access Publications from the University of California

Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CH3NH3PbI3Perovskite as a Possible Cooling Bottleneck

  • Author(s): Monahan, DM
  • Guo, L
  • Lin, J
  • Dou, L
  • Yang, P
  • Fleming, GR
  • et al.

Published Web Location

http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.7b01357
No data is associated with this publication.
Abstract

© 2017 American Chemical Society. A hot phonon bottleneck may be responsible for slow hot carrier cooling in methylammonium lead iodide hybrid perovskite, creating the potential for more efficient hot carrier photovoltaics. In room-temperature 2D electronic spectra near the band edge, we observe amplitude oscillations due to a remarkably long lived 0.9 THz coherent phonon population at room temperature. This phonon (or set of phonons) is assigned to angular distortions of the Pb-I lattice, not coupled to cation rotations. The strong coupling between the electronic transition and the 0.9 THz mode(s), together with relative isolation from other phonon modes, makes it likely to cause a phonon bottleneck. The pump frequency resolution of the 2D spectra also enables independent observation of photoinduced absorptions and bleaches independently and confirms that features due to band gap renormalization are longer-lived than in transient absorption spectra.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item