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STATISTICS IN MEDICINE, VOL. 13,969-981 (1994) 

SMOOTHING GROUPED BIVARIATE DATA TO OBTAIN 
THE INCUBATION PERIOD DISTRIBUTION OF AIDS 

JEREMY M. G. TAYLOR AND YUN CHON 
Department of Biostatistics. UCLA School of Public Health. Los Angeles, C A  90024, U.S.A. 

SUMMARY 
We use a penalized likelihood approach to obtain a smooth estimate of a bivariate distribution from 
grouped data where each observation consists of a region in a plane. The purpose of the analysis is to 
estimate the incubation period distribution of AIDS from the Multicenter AIDS Cohort Study, a prevalent 
cohort of homosexual men. In this article we illustrate the usefulness of the penalized likelihood approach. 
We also discuss the use of a cross-validation and a Bayesian scheme to choose the smoothing parameters 
and bootstrap samples to assess uncertainty. 

INTRODUCTION 

This paper describes an analysis of a specific AIDS-related data set, and follows a similar analysis of 
an older published version of this data set.' We develop in more depth the statistical issues in the 
analysis. The scientific problem is estimation of the incubation period distribution of AIDS from 
a cohort study of homosexual men recruited in Los Angeles in 1984-5. The incubation period is the 
time interval from infection with the AIDS virus (HIV) to the onset of clinical symptoms (AIDS). Its 
distribution is important both as a summary of the natural history of the disease and for its utility in 
predicting the future course of the epidemic. It has been shown' that to estimate the AIDS 
incubation period with data from a cohort study, one must model jointly both the incubation 
period and the date of HIV infection. Because of the nature of the study, however, for most subjects 
the exact values of these two variables are unknown but there is some information concerning their 
possible values. In statistical terms, the problem is that of estimating the joint bivariate distribution 
of two random variables when the observed data are grouped, that is each observation consists of 
a region in the plane. In the estimation scheme, we make minimal assumptions concerning the 
bivariate distribution and use a penalized likelihood approach to obtain smooth marginal 
distributions. The methods used also incorporate truncation in the sampling scheme and we 
discuss how we can introduce covariates that influence the joint distribution. 

Previous work in this area using related methodology to estimate the incubation period 
distribution of AIDS has been performed by others, using both parametric  model^^-^ and 
semi-parametric and non-parametric approaches. ' * ' , 6 *  ' 

STATISTICAL DESCRIPTION OF THE PROBLEM 

Because the methodology applies to situations other than AIDS, we describe it first in general 
terms. There is a sample of n subjects; the observation on subject i consists of a known region Bi in 

CCC 0277-67 15/94/090969-13 
0 1994 by John Wiley & Sons, Ltd. 

Received August 1992 
Revised June 1993 



970 J .  TAYLOR AND Y. CHON 

the bivariate positive quadrant R + x  R+. That is, there is an unknown specific value 
(xi, yi)€ R+ x R+ for each subject, but this value has not been observed. All that we know is that 
(xi, yi) lies within a known region Bi. In addition, covariates Zi ,  which could depend on (x, y) exist 
for each subject. Also, the samples is truncated in the sense that there is a truncated region Ti such 
that if (xi, yi) had been in region Ti, then subject i is excluded from the sample, with no knowledge 
of his existence. By definition, Bi and Ti are disjoint. The aim is to estimate the joint distribution 
of (x, y) given Z denote the corresponding density indexed by parameter 8 by 

m(x, y; 2, e), where IR+ jR+m(x, Y; 2, 6) dxdy= 1. 

The likelihood of the observations is 

We need the denominator in this expression to account for the truncation in the sampling scheme. 
One approach is to specify m parametrically, for example, with a bivariate log-normal 
distribution, to maximize L and base inference on the likelihood surface. In this article, we use 
a more non-parametric approach by making only weak assumptions concerning m, and we 
ensure that the estimate of m is smooth by maximizing a penalized In particular, we 
maximize 

log L - P(m, A), 

where P(m, A) is a penalty function which is large if the density m is 'rough' and small if m is 
'smooth'. P(m, A) is a non-negative function for which P(m, O)=O. Penalized likelihood balances 
agreement between the data and the model, as measured by large log L, against smoothness of the 
estimator, as measured by small P(m, A). The vector A controls the degree of smoothness, in the 
sense that larger values of each coordinate of A will increase the smoothness of the estimated 
bivariate distribution of m. In these problems, one usually estimates the value of A separately from 
the parameters of m. 

DESCRIPTION OF THE DATA 

The data are from the 1637 homosexual men who enrolled in the Los Angeles portion of the 
Multicenter AIDS Cohort Study.'*'' All participants were AIDS-free at the time of their 
enrolment between April 1984 and February 1985. Follow-up visits were scheduled every 
6 months during which blood was drawn for HIV antibody testing. AIDS dianosis information is 
obtained from the participants, their friends, their doctors, disease registries, death certificates 
and newspaper obituaries. 

There is a potential for bias in these procedures in the sense that lost participants are likely to 
reappear later only if they develop AIDS. To counter this, we assumed that any drop-out prior to 
July 1987 who, at the time of the final gathering of the data (January 1991), had not yet been 
reported to have AIDS, did not have AIDS before July 1987. 

As the definition of AIDS changed in September 1987, we excluded AIDS diagnoses that were 
only applicable after this date to ensure homogeneity of the endpoint. Some subjects in the study 
had stopped attending the scheduled 6 month visits but continued to be followed by telephone 
or mail. 
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The bivariate (R+ x R+) region fundamental to these data is (date of HIV infection) 
x (incubation period), denoted by (x, y). Each subject has a true value of (x, y), which is not known 

exactly but is known to lie in a region Bi.  Let t = x + y be the date of AIDS. In our analysis we take 
x=O as 1 January 1979, and the closing date as 31 December 1989. We could know both x and 
t exactly, or they could be right censored or interval censored. The exact position and shape of Bi 
differ for each subject. We can classify each of the 1637 participants into one of eight possible 
shapes for B i .  Each subject has a number of important dates that determine the boundary for Bi.  
These dates are Io,I1, 12, A 1, A2,  A3 and A4, where I,, is the date of enrolment, Il  is the date of the 
last HIV negative test, l2 is the date of the first HIV positive test, A l  is the date of AIDS diagnosis, 
A 2  and A 3  bound the date of AIDS when it is interval censored and A4 is the last follow-up date at 
which we know AIDS had not been diagonsed. The boundaries that define the eight shapes for Bi 
are (1) x < l , ,  t > A 4 ;  (2) x < l o ,  t = A l ;  (3) x < l o ,  A 2 < t < A 3 ;  (4) I l<x<12,  t>A4;  (5) Il  < x < 1 2 ,  
t = A l ; ( 6 ) I l ~ x < I 2 , A 2 < t < A 3 ; ( 7 ) x ~ I l , t ~ I l ; ( 8 ) x ~ I ~ , t ~ A 4 .  Participantsin region 1 were 
HIV seroprevalent at enrolment and have not developed AIDS; regions 2 and 3 are seroprevalent 
with AIDS; regions 4, 5 and 6 are seroconverters with or without AIDS; and regions 7 and 8 are 
seronegative. The numbers of subjects who possess each of the eight different shapes are 545,255, 
9, 93, 12, 0, 589, 134, respectively. There are 914 subjects known seropositive some time during 
their follow-up, and a total of 276 AIDS cases, but only 12 people for whom we know both the 
date of infection and the incubation period with reasonable accuracy. The truncation region Ti is 
{(x, y): x + y < l o } .  

BIVARIATE CONTINGENCY TABLE MODEL 

We adopt a semi-parametric approach for the estimation of m. The data are discretized into 
6 month units, converting the R+ x R+ bivariate space into a 23 x 23 contingency table. Let 
j denote the index of date of infection, where j =  1 indicates x E [ 1 January 79,30 June 791 and j = 23 
indicates x > 3 1 December 89. Similarly k = 1 indicates y E (0,O-51 and k = 23 indicates y > 1 1 years. 

The contingency table model for the ith subject in cell ( j ,  k) is 
23 23 

where fi is the probability distribution for date of infection, and g k l j ( Z i )  is the probability 
distribution for the incubation period given that the date of infection is j and the covariates are Z i .  
With this discrete formulation, the integrals in the likelihood become sums in an obvious manner. 

Motivated by theoretical models for the growth of the HIV epidemic," we assume 
fi=~e'-~/(l +e'-4) for j =  1,. . . , 6, where c is a parameter to estimate from the data. This 
parameterization is also useful to reduce instability problems in the estimation procedure partly 
because we have reduced the number of parameters by 5.  The enrolment of the cohort occurs 
between April 1984 ( j =  11) and February 1985 ( j =  13), so there is little information in the data to 
assist in the estimation 0f.h for j <  10. We chose to bridge part of this gap by making the above 
mild, yet flexible and reasonable, parametric assumption, rather than to rely completely on the 
smoothness induced by the penalty function to compensate for the lack of information. As part of 
a sensitivity analysis, we considered two other parametric forms for the early fi values, namely 
( i ) f i = ~ e ' - ~ / ( l  +ej-4), j =  1, . . . , 4 and (ii)fi=ceJ- l,j= 1, , . . , 6. 

We parameterize the incubation period distribution g in terms of the hazard h, that is 
k -  1 

g k l j ( z i ) = h k l j ( Z i )  (l-h,lj(zi)), k=l,. . . 7 22. 
I =  1 
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In this paper, we will focus on the independence model and do not consider covariates; thus 
g k l j ( z i )  = g k  and hkl,(Zi) = h k .  One could incorporate covariates through a log-linear model’ 

hkl j(zi)=%l, exp(pzi), 

where hil, is a baseline hazard, or through the model12* l 3  

CXP(l9Zi) 

S k l j ( z i ) =  1 - ( Q r i j ( Z i ) )  ...,I pj? I =  1 Q&)] [ , 

where QkI j ( Z i ) =  1 - hkl j (Z i ) .  Both these models become the standard proportional hazards model 
in continuous time. The possible covariates of interest in this study are age, treatment variables 
and other demographic and genetic factors. 

In the independence model, there are 39 parameters, so a procedure such as maximum 
likelihood will give unstable estimates. To force smoothness into the estimates offand h we used 
a penalized likelihood approach. The penalty function we used was 

Note that the second sum contains the term ho, defined as zero because it is well known that the 
hazard of developing AIDS is low in the first 2 years after infection. Setting ho = O  also assists in 
computational instability problems. Also note that the first sum does not includef,,, which is the 
catch-all category for HIV infection after December 1989. With the above penalty function, very 
large values of A1 and A2 would force the estimates offand h to be linear. 

We performed all computations using a Fortran program on an IBM 3090 with calls to IMSL 
program DBCONF for maximization of the penalized likelihood. The speed and convergence of 
the algorithm were unreliable when we used poor starting values or of the values of A 1  and I 2  were 
small. 

CHOOSING THE SMOOTHING PARAMETERS 

A simple method of determining the appropriate amount of smoothness is to choose the values of 
1 that give a ‘reasonable’ amount of smoothness to the solutions. That is, we wish enough 
smoothness to eliminate irregularities from the estimate of m, but not so much smoothness that 
the penalty rather than the data dominates the solution. This method, although subjective, is 
frequently satisfactory. Related to this approach one can graph the likelihood component of the 
penalized likelihood as a function of A1 and A 2 ,  and look for an elbow or inflection points in these 
graphs. 

Another method of choosing a suitable value for I is cross-validation. Let h(1, i) denote the 
maximum penalized likelihood estimate of rn when we delete observation i .  Then, regarding the 
likelihood as a distance measure, we choose 1 that maximizes ll;= Li(h(l ,  i)). In our specific 
application, this is computationally too expensive. Instead, we perform 20-fold cross-validation in 
which, instead of omitting a single observation at a time, we omit 1/20 of the data for each 
refitting of the model. 

Maximum penalized likelihood (MPL) has a Bayesian interpretation in which we view 
exp( - P ( m ,  A)) as proportional to, a possibly improper, prior for m; then the maximum penalized 
likelihood estimate (MPLE) is the posterior mode estimate. A third approach to the choice of 
a suitable value of 1 is by exploiting this Bayesian interpretation and using ABIC, the Bayesian 
information criterion type A.14 In our application, we can formulate the problem such that 
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m is a vector of parameters describing the joint density of (x, y) ,  and c(1) exp(-P(m, 1)) is 
the prior distribution for m. Then viewing 1 as parameters, we can regard the expression 
exp{ log L -  P(m, 1) + log c(1)} as proportional to a joint posterior distribution for m and 1. Then 
we can choose 1 to maximize the marginal posterior distribution having integrated out m. l 4  

There are some non-trivial problems with this approach, in particular that the prior for m is 
improper and we use a Laplace approximation to estimate the marginal posterior distribution. In 
our application let L(c,J h) denote the likelihood; let 

denote the improper Gaussian prior f o r j  and let 

n(h112)=k21:112 exp T 1 (hk+hk+2-2hk+1)2 
{12 k Y 0  

denote the improper Gaussian prior of h. Note that we can think of n(flA2) as 16 independent 
N(0, l/A1) priors for (1;+fj+2-2fj+l), j = 5 ,  . . . , 20; and n(hll2) as 21 independent N(0, 1/A2) 
priors for (hk+hk+2-2hk+1), k = O , .  . . ,20. For convenience of notation let 8=(c,J h), A=(&, 
A 2 ) ,  L(O)=L(c,f, h)  and n(eI1)=n(fl1,)n(hl1,). The MPLE, 8=8(1), maximizes 
T(8, 1)=log(L(B) n(Ol1)) for fixed. 1. Assume that T(8, 1) is approximately quadratic with respect 
to 0, that is that the posterior distribution is approximately normal; then 

- d2 
de2 T(0, 1)- T(8, 1)-$(0-6), H ( 0 - 8 ) ,  where H=H(8,1)=---T(8, 1)le. 

Then the method of choosing 1 is to maximize the marginal distribution with respect to 1. That is, 
choose the 1 that maximizes 

L(0)  n(ol1)de .ve71b.A, e- tlo-6~Hlf)-d)dfj = eTld. A)(2n)k/2 I H I  - 1/2, s s 
where k =dim(8)= 39. Minus twice the logarithm of this quantity is called ABIC by Ogata and 
K a t ~ u r a . ' ~  Evaluation of this criterion requires numerical calculation of the 39 x 39 hessian 
matrix for each choice of 1. 

CONFIDENCE INTERVALS 

We investigated two different approaches for constructing approximate confidence intervals for 
quantities of interest: a bootstrap scheme and a method that exploits the Bayesian interpretation 
of penalized likelihood estimation. The bootstrap confidence intervals are based on 100 bootstrap 
samples of the 1637 subjects. We considered three methods for constructing confidence intervals: 
the simple percentile method; the bias-corrected percentile method; and a scheme in which the 95 
per cent - confidence intervals for a quantity of interest Q are of the form (v-'(V(Q)--SD(v(Q))), 
v -  '(v(Q)+ 2SD(v(Q)))), where v is a suitably chosen transformation to make the bootstrap 
distribution approximately symmetric. As most of the quantities of interest are probabilities, we 
used the logit transformation of v. In practice, the three confidence intervals were similar for 
nearly all quantities. The bias-corrected percentile method results are presented here. 

We can also obtain confidence intervals using the Bayesian interpretation described above. In 
particular the posterior distribution for O=(c,f, h)  is approximately N(8, I T 1 ) .  
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Figure 1. Cross-validation score versus logl,,(&) for ,I2 = 5 x IO*(solid line); cross-validation score versus log,,,&) for 
I ,  = 105(dashed line) 

RESULTS OF DATA ANALYSIS 

Figure 1 illustrates the cross-validation score for a range of values of A1 and A,. From these 
graphs and others (not shown) in which we considered different combinations of A l  and A,, it 
appears that the best choices of A1 and A, are A? = lo5 and A2 = 5 x lo4, respectively. Figures 2 and 
3 show graphs of the estimates of jand h for a variety of values of AI and A,; it appears from these 
graphs that A: and A t  are reasonable choices. The estimates of the infection density j are 
insensitive to the choice of A2 for A2 in the range lo3 to lo*. Similarly the estimates of the 
incubation hazard h are insensitive to the choice of A1, for A 1  in the range 10, to 10’. 

Notice that the estimate of h is nearly linear for incubation times greater than 8 years. At these 
long follow-up times there is little information in the data so the estimate has been driven by the 
penalty term part of the estimation procedure. 

Figure 4 shows the value of ABIC, where 

-2ABIC = log L(f(A), & A ) ) - - J I ( f ( A ) ) - y  1 1  A 2  J,(h^(A))+ 81og A1+ 10.510g 1 2  2 
-flog(lHI) + 19’510g(2n), 

where US, h) is the likelihood evaluated a t jand  h, f (A)  and 6(A)  are the MPL estimates for a fixed 
value of A, and H is the hessian of the penalized likelihood. Note that ABIC does appear to give 
information about the right choice of A l ( A l  =2  x lo4) which roughly agrees with that from 
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Figure 2. Estimates of the infection distributionffor four choices of I , :  4 x lo2( 0). 2 x lo4(*), 105(Cl). 108(c). I2 = 5  x lo4 
in all cases 

Figures 1, 2 and 3, but it gives little information about A2 as the graph is flat with respect to A2. 
Figure 5 illustrates the likelihood component of the penalized likelihood function for different 

choices of A 1  and A*. The graph does suggest that a reasonable value of A1 is in the range 104-105, 
consistent with the other methods of choosing L1. The A2 graph, however, again indicates that the 
data are of little help in providing a good choice of 12. 

Figures 6 and 7 show the cumulative distribution of infection times and the incubation period 
with pointwise 95 per cent bootstrap confidence intervals. These confidence intervals do not 
reflect the uncertainty associated with the estimation procedure for 1. Figure 8 illustrates this and 
shows the 95 per cent confidence intervals for the estimate of h using I :  and A t ,  and also the 
estimate of h for two other choices of 12. Note that the contribution to the total uncertainty 
associated with estimating I is not negligible. A computationally intensive solution to this 
problem is to include in the bootstrap the estimation of 1 as well. 

The confidence intervals based on the Bayesian interpretation of penalized likelihood were 
about 10-50 per cent narrower than the bootstrap confidence intervals. The Bayesian-based 
confidence intervals were less satisfactory because many of the terms in the hessian were 
dominated by the penalty part of the penalized likelihood. This was particularly true for the 
hazard estimates hi for j greater than 10. Thus the confidence intervals associated with these 
parameters were driven by the choice of I2 rather than by the data. This is an example where, in 
a Bayesian sense, the improper prior assists considerably in obtaining a good point estimate, but 
the resulting posterior distribution is less useful because of its dependence on 12. 
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Figure 3. Estimates of the incubation distribution hazard h for four choices of I , :  2 x  lo3 (0). 5 x lo4(*), 2 x  106(0), 
IOe(c). A, = lo5 in all cases 

Bootstrapping the 1637 subjects introduces into the total uncertainty study aspects that are 
perhaps not relevant to inference about f and h. Bootstrapping cases incorporate variability 
associated with the design of the study, such as when participants enrolled and when they choose 
to miss a clinic visit. One could use a stratified bootstrap approach to correct for this 
overestimation of the uncertainty. We attempted this by resampling observation from within four 
strata defined by the date of enrolment; this caused a slight but inconsequential reduction in the 
bootstrap uncertainty. 

Figures 9 and 10 show the estimates of the infection densityfand the incubation period hazard 
h for the three choices of the parametric form offJ for small j. In both figures, and particularly in 
Figure 10, there is negligible difference between the results, indicating that the assumptions within 
this parametric part of the model have a negligible effect on the results. 

DISCUSSION 
The main difficulty with our approach is the computational effort required. The convergence was 
slow for all values of I l  and 12, although worse for small I1 and 12; the speed was substantially 
improved when we used good starting values. For small L1 and ,I2 there were multiple local 
maxima of the likelihood. Other authors6 extending the work of T u r n b ~ l l ' ~  have used the EM 
algorithm to reduce the instability of the numerical problems. 



-m 

-27w 

-m 

I 
-2im 

-2709 

-27w 
1 I I I I I 

3 4 5 0 1 I D 

W~IORW) 
Figure 4. ABIC versus loglo(Al) for 1, = 2  x lo6 (solid line); ABIC versus loglo(A2) for A 1  = 2  x lo4 (dashed line) 

0 I 2 3 4 5 0 1 I 0 

LoG(x1) oRIoC(u2) 
Figure 5. Likelihood component of penalized likelihood (log L) versus loglo&) for A ,  = 5  x lo" (solid line); log L versus 

l o g , o ( l 2 )  for l1 = lo5 (dashed line) 



1985 l W l  

~ O F M I B e n O w  
Figure 6. Cumulative distribution of infection distribution with 95 per cent bootstrap confidence intervals: 1, = lo’, 

A ~ = S X  104 

0 1 2  J 4 5 I 7  I #  I0 11 12 

m(nra9) 
Figure 7. Incubation period distribution with 95 per cent bootstrap confidence intervals: 1, = lo5. A2 = 5  x lo4 



I 

aoo : 

g 0.01) : 
n 
8 0.07 f 
F , 

Y 

0 1 2  3 4 5 I 7  0 0  10 11 12 

lW-1 
Figure 8. Uncertainty in estimate of the incubation period hazard: 1,=5 x lo4 and 95 per cent confidence intervals (*) 

compared with d2= 10' (0 )  and & = 2  x lo3 (0). A 1  = 10' in all cases 

lolD 1w2 1tM 1BM l W l  

YWOIlNFR3ON 
Figure 9. Influence of choice of parametric form for fi ( j S 6 )  on estimate of infection distribution: f i = c  exp(j)- I ,  
j=1. .  . . ,6 (0) ; f i=cexp(j -4) / (1  +exp(j -4) ) , j=I , .  . . ,6(*);j,=cexp(j-4)/(1 +exp(j -4) ) , j= l , .  . . , 4 ( 0 ) , 1 , = 1 0 5 ,  

~ ~ = 5  x 104 



980 J .  TAYLOR AND Y. CHON 

::; 0.011 

o 0.07 w 
A 
Y 

g 0.06 

E 5 0.05 

3 
9 0.04 

0.0s 

0.02 

0.01 

0.00 

0 1 2  s 4 5 0 7 II D 10 11 12 

w-1 
Figure 10. Influence of choice of parametric form for fi ( j g 6 )  on estimate of incubation hazard: / I =c  exp(j)- I ,  
j =  I ,  . . . , 6 (  O);fi=c exp(j-4)/( I +exp( j-4)), j =  1, . . . , 6  (*);/I=c exp(j-4)/(1 +exp(j-4)), j= 1, . . . , 4  (0). I ,  = lo5, 
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One validation of the numerical results is that they agree with other epidemiologic data. In 
particular, the infection curves in Figure 2 are consistent with what is known about the spread of 
the epidemic.16 The results in Figures 3 and 7 are similar to previous estimate (Reference 1, and 
references therein). From the model, we can estimate the number truncated from the sample as 

The estimated number varied between 37 and 47 depending upon the choice of smoothing 
parameters. This range is epidemiologically reasonable given the incidence of AIDS cases in Los 
Angeles, although the relevance of this is questionable as the cohort was not a population-based 
sample. An alternative procedure for estimating the size of this ‘unseen’ sample17 gave a value of 
45 for this cohort. 

In summary we believe that the penalized likelihood approach adopted in this paper is 
a reasonable, although computationally intensive, method of extracting good estimates of the 
incubation period distribution from this prevalent cohort study. 
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