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Sprinkler: A Reliable and Energy Efficient Data
Dissemination Service for Extreme Scale
Wireless Networks of Embedded Devices

Vinayak Naik, Member, IEEE, Anish Arora, Member, IEEE,

Prasun Sinha, Member, IEEE, and Hongwei Zhang, Member, IEEE

Abstract—We present Sprinkler, a reliable data dissemination service for wireless embedded devices which are constrained in energy,

processing speed, and memory. Sprinkler embeds a virtual grid over the network whereby it can locally compute a connected

dominating set of the devices to avoid redundant transmissions and a transmission schedule to avoid collisions. Sprinkler transmits

Oð1Þ times the optimum number of packets in Oð1Þ of the optimum latency; its time complexity is Oð1Þ. Sprinkler is tolerant to fail-stop

and state corruption faults. Thus, Sprinkler is suitable for resource-constrained wireless embedded devices. We evaluate the

performance of Sprinkler in terms of the number of packet transmissions and the latency, both in an outdoor and indoor environment.

The outdoor evaluation is based on data from project ExScal, which deployed 203 extreme scale stargates (XSS). Our indoor evaluation

is based on an implementation in the Kansei testbed, which houses 210 XSSs whose transmission power is controllable to even low

ranges. We compare Sprinkler with the existing reliable data dissemination services, analytically or using simulations also. Our

evaluations show that Sprinkler is not only energy efficient as compared to existing schemes, but also has less latency. Further, the

energy consumption of nodes and the latency grows linearly as a function of newly added nodes as the network grows larger.

Index Terms—Network protocols, real-time systems and embedded systems, wireless, wireless sensor networks.

Ç

1 INTRODUCTION

REPROGRAMMING in the field has emerged as a necessary
primitive for wireless devices. There are many reasons

for this, for instance—resulting from an incomplete knowl-
edge of the deployment environment, planned phases of
operation that are instrumented only at runtime or evolution
of the operational requirements. Reprogramming necessi-
tates a data dissemination service that is fully reliable since a
program must be delivered in entirety. Further, reprogram-
ming must utilize minimum energy so that the lifetime of
the network is maximized. In the context of reprogramming,
message transmission is an energy expensive operation, as
shown in Table 1. Another factor is the number of operations
for the microprocessor. Hence, reducing the number of
transmissions and the amount of computation are both
important goals in addition to reliability.

The problem of reliable data dissemination is widely
studied, even in the context of wireless embedded devices.
The optimization criteria for one class of well-known

existing schemes—viz. Deluge [1], Infuse [2], MNP [3],
and PSFQ [4]—are reliability and latency, in that order.
Even though some of these schemes do instrument sender
suppression techniques, these techniques do not effectively
minimize the number of senders and, hence, the number of
packet transmissions. The criteria for Sprinkler are relia-
bility, energy, and latency—in that order. To reduce energy
consumption, Sprinkler computes a subset of nodes as
senders. The subset is connected and every node in the
network has a neighbor in the subset. The problem of
selecting the minimum number of senders is computing a
minimum connected dominating set (MCDS) of the graph
induced by the wireless network, which is known to be NP-
hard even for a unit disk graph [5]. As a part of Sprinkler,
we provide a low complexity CDS algorithm, which is
suitable for embedded devices.

The CDS nodes broadcast messages instead of unicasting
to reduce the number of transmissions. But broadcast
messages can collide due to the hidden terminal effect.
Sprinkler avoids hidden terminals by using Time Division
Multiple Access (TDMA). The number of TDMA slots
determines the latency of a reprogramming operation. The
problem of computing a TDMA schedule that avoids
hidden terminals with a minimum number of slots in a
unit disk graph is equivalent to computing a D-2 vertex
coloring [6]. Intuitively, the reason behind distance two is
that two nonneighboring nodes u and v interfere with each
other if there exists a node w such that there are edges ðu;wÞ
and ðw; vÞ in the unit disk graph. We provide a D-2 vertex
coloring algorithm of low complexity, which is suitable for
embedded devices (henceforth, we use the terms TDMA
and D-2 vertex coloring interchangeably). In practice,
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node w may or may not interfere with node u depending
upon the distance between v and w. Therefore, a D-k vertex
coloring, where k is a real number greater than 1 and less
than 2, would suffice.

The time complexities of the state-of-the-art CDS con-
struction and D-2 vertex coloring algorithms and the
number of message transmissions are functions of the
number of nodes [7]. Hence, the existing algorithms are not
scalable for extremely large networks, such as those in
project ExScal [8]. ExScal consisted of 1,000 extreme scaling
motes (XSMs) [9] and 203 XSSs. Such extreme scale
networks demand local algorithms of constant time com-
plexities. The networks in ExScal were used for intruder
detection, classification, and tracking. One of the services
required for this class of applications is a localization
service which informs location to each node. Further, to
guarantee sensor coverage, the underlying networks are
dense. We use these two characteristics, viz. availability of
location service and density of networks, to derive local
CDS and D-2 coloring algorithms of low time complexities.

1.1 Our Contributions

. Sprinkler effectively reduces the number of senders
to a constant factor of the minimum using a local
algorithm of time complexity Oð1Þ for constructing a
CDS. A performance ratio of a CDS construction
algorithm is the maximum ratio of the cardinality of
computed CDS for a graph G over that MCDS of G.
The performance ratio of our algorithm is 18 2

3 . The
state-of-the-art distributed CDS algorithm, with
constant performance ratio, has Oð� log2 nÞ time
complexity, where � is the maximum degree in the
network and n is the number of nodes in the
network [7].

. Sprinkler effectively manages the latency by com-
puting a near optimal schedule using a local D-2
coloring algorithm of time complexity Oð1Þ for the
above calculated CDS. A performance ratio of a D-2
vertex coloring algorithm is the maximum ratio of
the number of computed colors for a graph G over
the minimum number of D-2 colors for G. The
performance ratio of our algorithm is 1 8

9 . The state-
of-the-art distributed D-2 coloring algorithm, with
constant performance ratio, has time complexity
Oð� log2 nÞ [7]. Further, both the existing algorithms
are randomized, whereas ours are deterministic. The
locality and constant time complexity of our algo-
rithms make Sprinkler scalable. A TDMA schedule
with few slots results in low latency.

. The number of packet transmissions is uniformly
distributed among all the transmitters. This helps in

load-balancing across the network. Further, the
latency is also uniformly distributed among all the
receivers, which means that all the nodes receive a
new program at uniformly distributed intervals.

. Sprinkler is tolerant to node addition, fail-stop, and
state corruption faults.

. The number of packet transmissions and the latency
scale as a linear function of newly added nodes.
Further, for a given network, if we increase the
density of nodes without increasing the hop counts,
then the number of packet transmissions and latency
remain approximately the same.

In a nutshell, we divide the problem of reliable data
dissemination into three subproblems—CDS construction,
D-2 vertex coloring, and a protocol to reliably disseminate
data using a CDS and a TDMA schedule. Each of these
subproblems is solved separately to yield our reliable data
dissemination service.

1.2 Organization of the Paper

We present the system model and the fault model in
Section 2. Then, in Section 3, we recall and extend some
concepts in graph theory. Following that, we describe our
algorithms for CDS construction and D-2 vertex coloring in
Section 4. In Section 5, we present our data dissemination
protocol Sprinkler, and we prove its fault-tolerance proper-
ties in Section 5.1. We adapt Sprinkler to a high-fidelity
radio model and evaluate the scalability of Sprinkler in
Section 6. Then, we compare the performance of Sprinkler
with existing schemes. Finally, we discuss related work in
Section 8, summarize our findings in Section 10, and
mention future work in Section 11.

2 SYSTEM MODEL

2.1 Model

We consider wireless devices which are constrained in
energy and processing. The examples include mote and
stargate. The devices are embedded in a plane. Let n be the
number of devices. In steady state, the devices are static. We
allow limited mobility as explained in Section 2.2. Each
device knows its location. The location information can be
provided using a localization service.
R is the reliable communication radius of the device. Let

pðxÞ be the packet delivery ratio at distance x from a sender
and P be the maximum value of p for any x. Let A be the set
of distances at which packet delivery ratio is equal to P .
Then, R is the maximum distance in A. Intuitively, R is the
maximum distance over the set of distances at which the
packet delivery ratio is maximum. We use the unit disk radio
model for the analytical evaluation of Sprinkler and the
probabilistic radio model for experiments and simulations.

The density of the nodes is such that we divide the plane
into a virtual grid of equal sized squares where 1) each
square has at least one node and 2) a node is able to
communicate to all the nodes in each of the four adjoining
squares. Formally, our density assumption is:

If R is the reliable communication radius of the device, then
every square of length R=

ffiffiffi
5
p

contains at least one device.

The density assumption must always be satisfied for use
of Sprinkler.
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For simplicity, we assume that the network traffic is
quiescent at the time of data dissemination. Quiescing data
traffic is easy. If a node hears a data dissemination packet, it
stops other traffic for the duration of dissemination. This
assumption can be made safely in case of dissemination due
to reprogramming. Since reprogramming would most
probably result in new data traffic, old traffic can even be
discarded.

2.2 Fault Model

New nodes can be added, nodes can detectably fail-stop, or
the state of nodes can get corrupted to an arbitrary value. A
device can be relocated, which is equivalent to a combina-
tion of fail-stop and an addition of a new node. In other
words, mobile nodes are not assumed to carry their state
while moving. In all the above mentioned faults, we assume
that the minimum density is preserved.

3 PRELIMINARIES

Consider a set of n equal-sized circles in a plane. The
intersection graph of these circles is an n-vertex graph; each
vertex corresponds to a circle, and an edge appears between
two vertices when the corresponding circles intersect. Such
intersection graphs are called unit disk graphs [5]. A
dominating set (DS) of a graph G ¼ ðV ;EÞ is a subset V 0 of
V such that every vertex v 2 V is either in V 0 or adjacent to
some member of V 0. A dominating set is connected (CDS) if
the subgraph induced by it is connected. A minimum
connected dominating set (MCDS) is a connected dominating
set of minimum cardinality [5]. Let GðV ;EÞ be an
undirected graph. A distance-2 vertex (D-2) coloring of a
graph is a mapping f : V ! f1; . . . ; kg such that fðuÞ 6¼ fðvÞ
whenever there is a path consisting of at most two edges
between u and v in G [10]. The D-2 coloring problem is
equivalent to the standard minimum vertex coloring on G2,
where G2 has the same vertex set as G and there is an edge
between two vertices of G2 if and only if there is a path of
length at most 2 between the vertices in G [6].

A bidimensional grid Bð1Þ of size r� c has r rows and
c columns, indexed, respectively, from 0 to r� 1 (from top to
bottom) and from 0 to c� 1 (from left to right), with r � 1
and c � 1. A generic vertex u of B will be denoted by
u ¼ ði; jÞ, where i is its row index and j is its column index.
Each vertex has degree equal to 4, except for the vertices on
the borders. In particular, each vertex ði; jÞ, which does not
belong to the grid borders, is adjacent to the vertices
ði� 1; jÞ, ði; jþ 1Þ, ðiþ 1; jÞ, and ði; j� 1Þ, as shown in Fig. 1.
BðkÞ is a bidimensional grid such that each vertex ði; jÞ is
adjacent to all the vertices ði0; j0Þ, where the euclidean
distance between ði; jÞ and ði0; j0Þ is not more than k.

4 ALGORITHMS TO COMPUTE CDS AND D-2
VERTEX COLORING

4.1 CDS Computation

Given a wireless network, let G ¼ ðV ;EÞ be its correspond-
ing unit disk graph. We assume that G is enclosed in the
smallest rectangular area of length rðR0=

ffiffiffi
5
p
Þ and breadth

cðR0=
ffiffiffi
5
p
Þ, where r; c are positive integers, 3 � r � c, and

R0 ¼ R. If r > c, then they can be exchanged. Further, the
rectangle is divided into square-shaped clusters of

length R0=
ffiffiffi
5
p

and one node is selected from each cluster
as a clusterhead. Since R0 ¼ R, the length of the square is
also equal to the reliable communication radius. In Section 6,
we will deal with the case where R0 > R. Only the
clusterhead nodes are used to construct a CDS M. At the
end of this section, we discuss the case where such
clustering is not available.

A node uði; jÞ2M, where 0 � i � r�1 and 0 � j � c�1,
if

. r mod 3 � 0: ½i mod 3 � 1� _ ½ði mod 3 6� 1Þ ^ ð0 < i <
r� 1Þ ^ ðj ¼ 0Þ�.

. r mod 3 � 1: ½i mod 3 � 0� _ ½ði mod 3 6� 0Þ ^ ðj ¼ 0Þ�.

. r mod 3 � 2: ½i mod 3 � 1� _ ½ði mod 3 6� 1Þ ^ ði 6� 0Þ
^ ðj ¼ 0Þ�.

Fig. 2a illustrates the application the above mentioned
algorithm for a network of randomly distributed nodes. The
circles represent nodes, gray circles represent selected
nodes, and black connected circles represent M. Note that
both the rectangle and the grid of squares are virtual. Fig. 2b
illustrates M for various cases of r.

Theorem 1. M is a CDS of G.

Proof. By construction, M is connected. For a proof of
domination, we will first consider the case where
r mod 3 � 0. Consider any node u in cluster ði; jÞ. Let v
be a node in cluster

. ðiþ 1; jÞ if i mod 3 � 0,

. ði; jÞ if i mod 3 � 1, and

. ði� 1; jÞ if i mod 3 � 2.

According to the CDS computation algorithm, v is in M.
Since the maximum distance between any two nodes in
clusters ði; jÞ and ðiþ 1; jÞ is R0 ¼ R, node v dominates u.
Similarly for the case where v is in cluster ði� 1; jÞ. We
can prove the same result for the remaining two cases,
viz. ðr mod 3 � 1Þ and ðr mod 3 � 2Þ. tu

Lemma 1. jMj < 2rc=3.

Proof. We compute the number of nodes in CDS M,
returned by our algorithm. We consider four cases,
depending upon the number of rows:

. r mod 3 � 0:

- r ¼ 3 : jMj ¼ c < 2rc=3.
- r 6¼ 3 : jMj ¼ 2ðcþ 1Þ þ ðr=3� 2Þc < 2rc=3

[since c � r � 3].
. r mod 3 � 1 : jMj ¼ ðcþ 1Þ þ ðr� 4Þc=3þ ðcþ

1Þ < 2rc=3 [since c � r � 3].
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Fig. 1. A bidimensional grid Bð1Þ.



. r mod 3 � 2 : jMj ¼ cþ ðr� 1Þðcþ 2Þ=3 < 2rc=3
[since c � r � 3]. tu

Theorem 2. The size of the CDS computed by the algorithm is at
most 18 2

3 times that of an MCDS.

Proof. In graph G, the maximum number of neighboring
squares within R distance of a dominating node is equal
to the maximum number of squares of length R0=

ffiffiffi
5
p

that
can be packed in a circle of radius RþR=

ffiffiffiffiffi
10
p

, which is
�ðRþR=

ffiffiffiffiffi
10
p
Þ2=ðR0=

ffiffiffi
5
p
Þ2 < 28. Hence, a node in MCDS

can dominate at the most 28 clusterheads, which means
that the jMCDSj � rc=28. According to Lemma 1, the
maximum size of M for a bidimensional grid of size rc is
2rc=3. Hence, the size of the CDS computed by the
algorithm is at most 18 2

3 times that of an MCDS. tu

4.2 D-2 Coloring

We only need to compute D-2 coloring for nodes in M since
only those will transmit packets. Since 5ðR0=

ffiffiffi
5
p
Þ > 2R, no

two nodes in M within 5ðR=
ffiffiffi
5
p
Þ distance of each other can

have the same color, i.e., there exists at least five squares
between two CDS nodes. Let Cði; jÞ denote the D-2 color of
a node uði; jÞ 2M, where 0 � i � r� 1 and 0 � j � c� 1.
Cði; jÞ is computed using the following formula:

. ði mod 3 � 0Þ ^ ði mod 6 � 0Þ: j mod 11.

. ði mod 3 � 0Þ ^ ði mod 6 6� 0Þ: ðjþ 6Þ mod 11.

. ði mod 3 � 1Þ ^ ði mod 6 � 1Þ ^ ðj ¼ 0Þ: 12.

. ði mod 3 � 1Þ ^ ði mod 6 6� 1Þ ^ ðj ¼ 0Þ: 14.

. ði mod 3 � 2Þ ^ ðj ¼ 0Þ: Cði� 1; 0Þ þ 1.

The number 16 insures that no two nodes within
2R0 distance of each other have the same color. Fig. 2c
illustrates the application of the algorithm. Again, the dark
circles represent the nodes in M. The total number of
colors is equal to 16. The time complexity of the D-2
coloring algorithm is Oð1Þ [since c � r].
Theorem 3. The number of colors computed by the algorithm is

at most 1 8
9 times that for an optimal D-2 coloring.

Proof. There exists a clique of size nine in M2, as shown by
the dotted region in Fig. 2c. In other words, the maximum
distance between any two nodes with the dotted region is
less than 2R0. Therefore, a D-2 coloring of M requires at
least nine colors. Sprinkler uses 16 colors. Hence, the
number of colors computed by the algorithm is at most
1 8

9 times an optimal D-2 coloring. tu

4.3 Cluster Formation

The problem of partitioning the network into nonoverlap-
ping equal-sized squares is equivalent to clustering. For-
mally, we want to divide the network into square-shaped
disjoint clusters of length R0=

ffiffiffi
5
p

. We provide a simple
distributed clustering algorithm to form such clusters.

Let b be the base station node that originates broadcast
data. In addition to our assumption of minimum density
and location information, we assume that b knows the
locations of the four corners of the smallest rectangle of
length rðR0=

ffiffiffi
5
p
Þ and breadth cðR0=

ffiffiffi
5
p
Þ enclosing G, where r

and c are positive integers and 3 � r � c as mentioned in
Section 4.1. If r > c, then they can be exchanged. Any node,
after receiving the locations of the four corners of the
rectangle, can locally partition the rectangular area into
squares of length R0=

ffiffiffi
5
p

and compute the coordinates of its
square. Further, we assume that each node knows the nodes
in its one-hop neighborhood. In particular, it knows the ID
and the location of its one-hop neighbors.

For simplicity of presentation, we assume that b is
located at the northwest corner of the rectangle as shown in
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Fig. 2. CDS computation and D-2 vertex coloring. (a) CDS computation
for random deployment. (b) CDS of bidimensional grid Bð1Þ. (c) A D-2
coloring for M.

Fig. 3. Distributed cluster formation.



Fig. 3. Note that the complexity of the algorithm does not
change if we assume b is at any other location. Following is
the algorithm:

if ðID ¼ b _ rcv hlocations of four cornersiÞ
^:sent! then

if j ¼ 0 then

select a node u from square ðiþ 1; 0Þ;
– (A)

send hlocations of four cornersi to u;

end if

select a node v from square ði; jþ 1Þ;
– (B)

send hlocations of four cornersi to v;

sent :¼ TRUE;

end if

The initial value of the variable sent is FALSE.

Since a node knows the IDs and locations of its one-hop
neighbors, it can locally select a node as mentioned in
actions ðAÞ and ðBÞ. Fig. 3 illustrates the application of the
above algorithm for a case where nodes are randomly
distributed. Circles represent nodes and gray circles
represent selected nodes. The gray node in square ð0; 0Þ is
b. An arrow between two nodes represents a transmission of
a message.

Theorem 4. The time complexity of the distributed cluster
formation is Oð1Þ and the number of messages is OðnÞ, where
each message is of size Oð1Þ.

Proof. Each node in M sends at most two messages. Hence,
the time complexity of the distributed MCDS computa-
tion is Oð1Þ. Each cluster-head sends at most two
messages, and the number of clusters is equal to rc,
which is not more than n. Therefore, the total number of
messages is OðnÞ. Each message contains the maximum
and minimum locations of the nodes. Hence, the
message size is Oð1Þ. tu

5 DATA DISSEMINATION PROTOCOL

5.1 Overview

We design a data dissemination protocol that uses CDS and
TDMA scheduling for transmissions. In a unit disk model,
all nodes should receive data by virtue of the connected
dominating set and TDMA scheduling. But, in reality, the
radio is more complex. Unlike in a unit disk model, the link
reliability has more than two values. Also, link reliability
has temporal variation. To deal with packet losses, the
protocol must ensure reliability. Again, the objective is to
minimize the number of packet transmissions and the
latency, in that order.

We divide data dissemination into two phases, viz.
streaming phase and recovery phase. The data to be dissemi-
nated is divided into packets. Only the nodes in the CDS
transmit packets during the streaming phase and the
transmissions are scheduled. To recover lost packets, we
use piggybacked negative acknowledgments during the
streaming phase and separate negative acknowledgment
messages during the recovery phase. At the end of the
streaming phase, all the nodes in the CDS receive the data
completely. And, at the end of the recovery phase, all the
non-CDS nodes receive the data completely. Following is the

description of the streaming phase and the recovery phase.

5.2 Streaming Phase

Let thop be the time taken for a packet to traverse one hop
and C be the total number of colors for D-2 coloring of the
CDS as mentioned in Section 4.2. thop includes transmission
time. For simplicity, let us assume packet size to be a
constant. Then,

streaming period ¼ thop � C: ð1Þ

Every packet contains the D-2 color of the sender. We use
the synchronous reception property of the wireless medium
to achieve time synchronization among the nodes [11]. In
particular, when a node in the CDS for the first time hears a
packet, it synchronizes its time with that of the sender. Let
Cu and Cv be the D-2 color of the nodes u and v,
respectively. Let t0 be the time at u when u hears a packet
from v. The smallest time difference �C between the
transmissions of node u and v is calculated as follows:

�C ¼ jðCu � CvÞ mod Cj � thop: ð2Þ

Then, the transmission schedule of u is ðt0 þ�CÞ,

ðt0 þ�C þ streaming periodÞ;
ðt0 þ�C þ 2 � streaming periodÞ;
ðt0 þ�C þ 3 � streaming periodÞ;

and so on.
We use a local timer at each node to compute the

transmission schedule. In practice, the period of a timer has
a drift. Further, the drift varies from node to node. Such
varied drifts can cause a shift in the transmissions schedules
of nodes, hence increasing the number of collisions. To
compensate for the drift, a node continuously adjusts its
local timer period so that the difference between any two
successive transmissions is equal to the streaming period.
This ensures that the transmissions follow the global TDMA
schedule. Note that Sprinkler uses its data broadcast
messages to achieve time synchronization of the required
accuracy and does not require an explicit time synchroniza-
tion service.

Each node, regardless of whether it is in the CDS or not,
selects a neighboring node in the CDS as its parent. The
objective of selecting a parent is to distribute the number
retransmissions for lost data packets uniformly among the
CDS nodes. To satisfy this objective, the criteria for parent
selection could be as simple as distance or as complex as
online link quality measurement. In our experiments, we
use the distance. In particular, given a node u, let Pu be the
set of CDS nodes, which are closer to the base station than u.
Then, the parent of u is the closest neighbor of u in the set Pu.

A node in the CDS forwards each newly heard packet. It
piggybacks negative acknowledgments for the lost packets
and its parent ID while transmitting a packet. The parent
retransmits the packet, if it is available, in the next time slot.
Therefore, recovery is done on a hop-by-hop basis similar to
PSFQ [4]. This avoids downstream propagation of a packet
loss, which in turn reduces the number of negative
acknowledgments in the recovery phase. Also, the stream-
ing of retransmissions reduces the latency.

NAIK ET AL.: SPRINKLER: A RELIABLE AND ENERGY EFFICIENT DATA DISSEMINATION SERVICE FOR EXTREME SCALE WIRELESS... 5



Let N be the total number of packets and i be the
sequence number of the last heard packet. Then, each node
calculates the duration of streaming phase after hearing a
packet as follows:

duration of streaming phase ¼ ðN � iÞ � streaming period:
ð3Þ

Therefore, the duration of streaming depends upon the total
number of packets and the number of retransmissions.

5.3 Recovery Phase

If a node does not receive all the packets at the end of the
streaming phase, it enters the recovery phase. Since all the
CDS nodes have received all the packets at the end of
streaming phase, only the non-CDS nodes will enter the
recovery phase. To recover lost packets, a node unicasts a
recovery request message containing a list of missing
packets to its parent. In response, its parent unicasts the
requested packets, called recovery data messages. Recovery
request messages and recovery data messages are sent
periodically at certain intervals. These intervals are tuned
according to the density of the nodes to avoid network
congestion.

The number of packet transmissions in the recovery
phase depends upon the number of losses for non-CDS
nodes at the end of the streaming phase. By using a proper
value of R0, we can select a CDS that will minimize the
number of losses for non-CDS nodes during the streaming
phase. In Section 4, we will describe how to select such anR0.

Although all the nodes are potential transmitters in the
recovery phase, the number of transmissions during the
recovery phase are few as compared to that of the streaming
phase. Therefore, a global transmission schedule for all the
nodes will result in wasted time slots. Instead, we use a link
level unicast primitive which uses a RTS-CTS-DATA-ACK
mechanism for coordination to reliably transmit packets
during the recovery phase. Both the recovery request
message and the recovery data message are sent via a
RTS-CTS-DATA-ACK mechanism.

5.4 Power Management

As mentioned in Table 1, a radio in idle mode also
consumes a noticeable amount of energy. In embedded
devices, the current draw to switch the radio on or off is
about the same as that of one packet transmission or
reception, e.g., it takes 14 mA to turn the XSM radio on or
off. Hence, putting the radio to sleep saves power when the
sleep time is more than that required for two packet
receptions. We provide a mechanism to switch off the
radios of non-CDS nodes without any loss of data. As
mentioned in Section 5.2, each node selects a parent node.
Let u be any non-CDS node. When u hears first packet, it
calculates TDMA schedule of its parent using (1). Then,
during the streaming phase, u keeps its radio off except
during time slots when its parent is scheduled to transmit.
The periodic switching of radio by a non-CDS node is called
power save mode.

At the end of streaming phase, if recovery is required, u
switches on its radio and keeps it on until it has received all
the packets. After recovering all the packets, u again enters
power save mode.

6 PERFORMANCE OF SPRINKLER IN PRACTICE

6.1 Adapting a Reliable Transmission Radius

The radio model in practice is more complex than a unit

disk model, e.g., the packet delivery ratio for an outside

environment is illustrated in Fig. 4a. Commonly used

practical radio models are the two ray ground model and

the shadow model. Computing a CDS under these models

is complex as compared to that of the unit disk model. In

this section, we present an adaptation of Sprinkler to the

practical radio model.

Lemma 2. Given a graph G, if there exists at least one node in

every square of length x in a rectangle enclosing G, then there

also exists at least one node in every square of length y > x in

that rectangle.

Proof. Since y > x, every square of length y encloses at least

one square of length x. Hence, there also exists at least

one node in every square of length y. tu

According to our model in Section 2.1, each square of

length R=
ffiffiffi
5
p

contains at least one node, where R is a

reliable communication range. Therefore, from Lemma 2,

every square of length greater than R=
ffiffiffi
5
p

also contains at

least one node. Sprinkler then self-adapts the value of R0

greater than or equal to the reliable communication range R

such that the total number of transmissions are the

minimum for data dissemination. We describe the adaption

process for a sample outdoor environment in the following

paragraph.
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Fig. 4. Outdoor experiment setup. (a) Packet delivery ratio in an open

field. (b) Outdoor network topology.



We use XSS devices equipped with 9 dBi antennae of
length 1.82 m for experiments. We deployed 203 XSSs in a
grid of 29� 7 at a separation of 45 m in a plane open field as
shown in Fig. 4b. Sprinkler is implemented in C under
EmStar [12] for Linux-based systems such as PC, startgate,
iPAQs, etc. The payload consists of 100 data packets.
According to the definition of R in Section 2.1, the reliable
communication range is 270 m as shown in Fig. 4a. The
location information is provided using a GPS device on
each XSS. The CDS is a subset of nodes in the middle row.
We varied the value of R0, thereby resulting in different
separation between the two neighboring senders. We find
that an R0 of 315 m results in the least number of packet
transmissions as shown in Fig. 5a. To handle the impact of
channel variation, adaption runs of Sprinkler have to
execute multiple times. The confidence level behind the
selection of R0 depends upon number of runs. The number
of packet transmissions increases after 315 m due to an
extensive recovery phase, which is a consequence of high
packet loss in the streaming phase. Fig. 5b shows the
latency for various values of R0.

6.2 Scalability of Sprinkler

6.2.1 Network Setup

We use Kansei [13], the testbed of stargates equipped with
an IEEE 802.11b ad hoc network, for our experiments.
Kansei provides an option to attenuate the transmission
power to attain the required power level. We use a network
of 49 nodes arranged uniformly in a grid of area 7� 7 at a
separation of 0.91 m. The node at location ð0; 0Þ is the source
of data dissemination as show in Fig. 6. The number of data

packets to be disseminated is equal to 240. The mean packet
delivery ratios mentioned in Table 2 is used in Kansei. The
location is provided to each node using a localization
service. According to the definition of R in Section 2.1, the
value of R is equal to 0.91 m. Sprinkler adapts R0 to a value
of 1.83 m using the procedure mentioned in Section 4.

6.2.2 Analysis

We measure the performance of Sprinkler as a function of
the number of nodes in the network. We consider two types
of distribution, viz. constant density and increasing density.
In case of constant density, we add nodes without changing
the number of nodes per a square of length R0=

ffiffiffi
5
p

. And, in
case of increasing density, we add an equal number of
nodes to all the existing squares of length R0=

ffiffiffi
5
p

.
Following are the formulas to compute the number of

packet transmissions and the latency:

number of packet transmissions
¼ number of packets � jCDSj; ð4Þ

latency ¼ number of packets
� ðnumber of hops in diameterþ CÞ � thop: ð5Þ

From Lemma 1, the number of nodes in the CDS of a
network is a linear function of the number of nodes in the
network. Hence, the number of packet transmissions is also
a linear function of the number of nodes in the network.
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Fig. 5. Performance of Sprinkler in an outdoor environment. (a) R0

versus number of packet transmissions. (b) R0 versus latency.

Fig. 6. Network topology.

TABLE 2
Mean Packet Delivery Ratios



From the algorithm in Section 4.2, the number of D-2 colors
is a constant. Hence, the latency is a linear function of the
number of packets and the number of hops in the diameter
of the network.

As we increase the number of nodes by keeping the
density constant, the size of the CDS and the number of
hops increase, as shown in Table 3. Hence, as shown in
Fig. 7a and Fig. 7b, the number of packet transmissions and
the latency increase linearly with the number of nodes. The
spike in latency for numbers of nodes equal to 121 is due to
the granularity of the period in EmStar’s software timer.
The granularity of EmStar’s timer leads to a drift, which is
up to 10 msec. Therefore, the maximum offset in latency for
disseminating 240 packets in streaming phase would be
2.4 sec. The spike in Fig. 7b is about 2 sec.

As we increase the number of nodes by increasing the
density, the size of the CDS and the number of hops still
remain the same. In other words, the new nodes are added
to the existing clusters. These nodes receive data by
overhearing the broadcast packets sent by the CDS nodes.

Hence, as shown in Fig. 8a and Fig. 8b, both the number of

packet transmissions and the latency are constant.

7 COMPARISON WITH EXISTING RELIABLE DATA

DISSEMINATION SCHEMES

7.1 Comparison with Deluge

Deluge is a reliable data dissemination protocol used for

sensor network reprogramming at scale [1]. Deluge does not

compute a CDS or a TDMA schedule. It uses heuristics to

optimize the number of packet transmissions and latency.

Since it is complex to theoretically analyze the performance

of Deluge, we do a simulation-based comparison.
Deluge is implemented in NesC [14] under TinyOS [15]

for mote platforms. TOSSIM [16] is a simulator for TinyOS-

based NesC programs. It has an option to specify the

network topology and packet delivery ratio. We used

Tython [17], which is a scripting tool, to set up simulation

parameters. We used Kansei [13] to conduct experiments

with Sprinkler. Under TOSSIM and Kansei, we use the same

network setup as mentioned in Section 4.2.1. The values of

R and R0 are the same as those in Section 4.2.1. We are

working on porting Deluge in C, so that, in the future, we

can compare performances under a single setting of Kansei.

Similarly, we have started porting Sprinkler to NesC which

will enable us to compare the performance under TOSSIM.
Fig. 9a and Fig. 9b capture the distribution of the number

of data packets transmitted by the nodes in Deluge and

Sprinkler, respectively. The size of the circle represents the

number of packet transmissions. The reason behind nonuni-

form separation between nodes is random selection of a

clusterhead in a square.
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Fig. 7. Constant density. (a) Number of transmissions. (b) Latency.

TABLE 3
Number of CDS Nodes and Number of Hops in Diameter

Fig. 8. Increasing density. (a) Number of transmissions. (b) Latency.



We compare the latency in terms of an abstract time unit,
which is equal to the time taken to send a single packet.
Fig. 10a and Fig. 10b capture the distribution of latency for
the nodes for Deluge and Sprinkler, respectively. The size of
the circle represents the latency. Note that the number of
packet transmissions and latency is uniformly distributed in
case of Sprinkler by the virtue of a regular structure of the
computed CDS and TDMA schedule. For a sparse network,
while we expect Deluge to have a higher number of data
senders, for Sprinkler, we can tune the value of R0 to have a
number of senders equal to a constant factor of the optimum.

Table 4 gives a comparison in terms of the total number
of data senders, packet transmissions, and maximum
latency in the network. Sprinkler avoids extraneous
transmissions by computing CDS as a function of the
transmission radius and scheduling the transmissions to
preclude collisions.

7.2 Comparison with Other Schemes

Pump Slowly and Fetch Quickly (PSFQ) [4] is a protocol
designed to reliably disseminate a large number of data
packets. PSFQ operates in two alternating phases, viz.
pumping where data is forwarded by source and fetching
where destinations recover lost packets using a request-
reply handshake. The idea is to perform pump operation at
a slow rate and fetch at a fast rate. In contrast, Sprinkler
optimizes the rate at which data is transmitted by the
sender by calculating an optimal transmission schedule that
reduces collisions. Hence, Sprinkler results in lower latency.
Multihop Network Reprogramming (MNP) [3] and Infuse [2]
are two reprogramming services for sensor networks. MNP
suppresses the number of senders by selecting a few

senders in a local manner and pipelines messages for faster
delivery but it does not avoid the hidden terminal problem.
Infuse uses TDMA scheduling to avoid collisions but does
not optimize the number of senders; hence, it is less energy
efficient and requires a higher number of slots.

8 RELATED WORK

In this paper, we address the problem of reliable data
dissemination of multiple data packets to all the nodes in a
wireless network of energy constrained embedded devices.
The reliability has to be 100 percent in terms of both the
number of packets and receivers. Further, the protocol has
to be energy efficient and simple to be executed on devices
with slow processors. We give a brief comparison with the
existing data dissemination services.

A naive scheme of the single retransmission of packets
results in a broadcast storm problem as discussed in [18],
which means that collisions and contention hamper relia-
bility. Further, this is not energy efficient. The solution in
[18] suppresses transmissions but does not guarantee
delivery of all the data packets. The SPIN-RL [19] and
Trickle [20] use an advertise-request-reply handshake
protocol to disseminate data. But, these protocols are
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Fig. 9. Number of packet transmissions. (a) Deluge. (b) Sprinkler.
Fig. 10. Latency. (a) Deluge. (b) Sprinkler.

TABLE 4
Comparison Regarding Packet Transmission and Latency



designed for a small number of data packets and, hence, are
not optimized for bulk data transfer. While [21], [22], and
[23] use a CDS to suppress the number of senders, the first
two are designed for unicasting a single packet and the
latter for a single packet broadcast. Therefore, these
schemes address a different problem than that of Sprinkler.
The problem of reliable bulk data dissemination and that of
single packet dissemination are different. We describe one
difference in protocol design. In bulk data dissemination, a
bulk datum has to be divided into multiple data packets,
each of which could possibly be sent using multiple
sessions of a single packet dissemination protocol. Such
multiple sessions could either overlap in time or not. While
the first case would result in collisions and/or congestion,
the latter case would result in increased latency as
compared to Sprinkler, which uses pipelining.

Parthasarathy and Gandhi [7] consider the problem of
constructing a virtual backbone, i.e., a CDS, in an ad hoc
network that can be used for broadcast and unicast routing.
They also use a D-2 coloring algorithm to calculate TDMA
scheduling. The time complexity of their CDS construction
algorithm is Oðlog2 nÞ and that of D-2 coloring is
Oð� log2 nÞ, where � is the maximum degree in the
network; in the case of Sprinkler, the time complexity of
both CDS construction and D-2 coloring is Oð1Þ. Recently,
Dubhashi et al. [24] proposed a CDS-based scheme of time
complexity Oð1Þ for broadcasting. But, the performance
factor of Dubhashi’s scheme is not proved to be constant
and it uses flooding to disseminate the data. While both
these schemes, i.e., Parthasarathy and Gandhi’s [7] and
Dubhashi et al.’s [24], are randomized and give probabilistic
guarantees, Sprinkler is deterministic.

Alzoubi [25] considers the problem of distributed
construction of a CDS for an ad hoc wireless network.
Their algorithm first builds a spanning tree and then forms
CDS based on the spanning tree. The performance ratio of
the CDS is eight and the time complexity is O(n). Since
maintenance of a spanning tree takes O(n) time in the
presence of node failures and movement, Alzoubi later
proposes an efficient CDS algorithm [26], which does not
maintain a spanning tree and locally heals a CDS by
maintaining 2-hop neighborhood information. The perfor-
mance ratio of the algorithm is 192 and the time complexity
is O(n). Sprinkler has a performance ratio of 18 2

3 , time
complexity of O(1), and heals a CDS by maintaining 1-hop
neighborhood information.

Parthasarathy and Gandhi and Alboubi’s solutions do
not assume a minimum density and location information
unlike Sprinkler. As discussed earlier, we are working on
cluster formation without the location information.

9 DISCUSSION

Constant use of a CDS would result in depletion of the CDS
nodes. A load-balancing policy can be enforced in order to
guarantee the uniform use of energy across the clusters.
After every constant number of packet transmissions, the
entire CDS can be shifted by an offset of one horizontal row.
Similarly, the CDS can also be shifted by a vertical row.
Such a shifting would guarantee uniform load-balacing
across all the clusters.

A majority of the large-scale deployments of wireless
sensor networks follow bidimensional grid deployment or a
variation of it, e.g., ExScal (Extreme Scale) and NESTFE
(NEST Final Experiment) [27]. The primary reasons to
choose bidimensional gridlike patterns for deployment are
1) simplicity in deployment and 2) high QoS sensing
guarantees using a low number of sensors as compared to
random or other geometric patterns. Bidimensional grid
patterns satisfy Sprinkler’s density assumption. Note that
Sprinkler does not assume a bidimensional deployment
pattern. It makes an assumption about density, which can be
satisfied by various deployment patterns including random.

If the distance in the bidimensional grid deployment is
R=

ffiffiffi
5
p

, then such a deployment is optimal in the sense that
we would need a minimum number of nodes for Sprinkler
to work. The total number of deployed sensors can be
calculated given the deployment area.

10 CONCLUSION

We presented Sprinkler, a reliable and energy efficient data
dissemination service for wireless embedded devices. A
preliminary version of the paper appeared in the Proceed-
ings of the IEEE Real-Time Systems Symposium (RTSS ’05) [28].
Sprinkler assumes a minimum node distribution density
and the knowledge of location information. These assump-
tions enable us to efficiently construct clusters in the form of
squares. We then use the regular grid structure of the
clusterheads to efficiently compute a CDS and a corre-
sponding TDMA schedule. As an output of CDS and
TDMA algorithms, each node remembers its parent ID,
whether it is a CDS node or not, and its time slot number.
This is a constant amount of state. As part of the data
dissemination protocol, each node maintains the total
number of packets in a data dissemination session, the
number of packets received, and the recovery requests of its
children. Since the number of children is of the order of the
degree of a node, the state maintained by Sprinkler during a
data dissemination is Oð�Þ.

We showed that Sprinkler is tolerant to fail-stop and
state corruption faults, which are common in embedded
wireless networks. We analytically bounded its perfor-
mance in terms of the number of packet transmissions and
the latency. Further, we compared its performance with
Deluge. We found that Sprinkler outperforms Deluge by a
factor of 15 for a 7� 7 network under simulation. We
measured the performance of Sprinkler in an outdoor
ad hoc IEEE 802.11 network of 203 devices and suggested
an approach to optimize its performance. Sprinkler was
successfully used at the backbone nodes of ExScal, the
largest ever sensor network deployment [8], to broadcast
new mote programs, XSS programs, and network manage-
ment commands.

11 FUTURE WORK

Persistent usage of a CDS will result in a faster depletion of
energy for the nodes in the CDS. Hence, we will extend the
CDS construction algorithm to consider the energy levels of
nodes so that the energy usage is balanced across the
network. Since Sprinkler uniformly distributes the number
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of packet transmissions across the network, it is simple to
instrument load balancing. In the current implementation of
Sprinkler, non-CDS nodes keep their radio on all the time.
We will instrument turning off of radios for non-CDS nodes
as described in Section 5.4 and experimentally compare the
energy savings of Sprinkler with that of broadcast schemes.

Sprinkler requires location information to form clusters.
We are currently working on a clustering algorithm which
will guarantee square-shaped clusters without location
information. We are also working on weakening the
assumption about density. In particular, we will consider
the networks where not every square has a node. The
formation of square-shaped clusters results in low time
complexity algorithms for CDS construction and D-2
coloring. Another regular shape that provides disjoint
partitioning of networks like that of a square is a hexagon.
We will explore hexagonal clustering to compute CDS and
D-2 coloring. In practice, a D-k vertex coloring would
suffice, as mentioned in Section 1. A D-k coloring algorithm
will result in fewer time slots and, hence, less latency.
Currently, we are working on a D-k vertex coloring
algorithm of low time complexity.

As mentioned in Section 9, the large-scale sensor net-
work deployments still prefer simplistic bidimensional grid
patterns. However, it would be interesting to study
deployment characteristics, such as method and number
of nodes, for random deployment. It is a research problem
in itself. We have not studied this problem. We have
included this Section 11 for future work.

APPENDIX

FAULT-TOLERANCE OF SPRINKLER

In this section, we describe the fault-tolerance properties of
Sprinkler with respect to the fault model specified in
Section 2.2. We provide an intuitive argument. We use the
notion of critical variables [29] to prove the fault-tolerance
properties of Sprinkler. The critical variables are a subset of
variables at each node. The correct values of critical
variables imply the safety and liveness of a system.

The critical variables for Sprinkler are

. Coordinates of Square: Stores the coordinates of the
square to which a node belongs.

. Parent ID: Stores the node ID of the parent.

. Child IDs: Stores the node IDs of the CDS children
nodes

A.1 Addition of a New Node

A newly added node assumes the role of a non-CDS node.
Hence, the addition of a new node does not affect the
critical variables of any other node.

A.2 Node Fail-Stop

We consider two cases depending upon whether a fail-
stopped node is a CDS node or not.

. A non-CDS node: A node does not maintain any
critical state variable about any non-CDS node.
Therefore, if a non-CDS node fail-stops, then no
critical variable is affected.

. A CDS node: If a CDS node f fail-stops, then the
nodes in its transmission radius may not receive
packets. In terms of critical variables, the Parent ID
variable of all of f’s children and Child IDs variable
of f 0’s parent have incorrect values. We use the fault-
containment property of clustering to locally repair
the fault. In particular, the parent of f selects a new
node g in the square of the f node as its child. All the
children of f assign g as their new Parent ID.

It could be the scenario that all the nodes in the
child’s cluster have fail-stopped. In such a scenario,
there are two cases, either the child node belongs to a
row in CDS or to a column in CDS. If a child node is
a row-node, CDS can be repaired in constant time.
The idea is to select a new pair of row-nodes such
that CDS is connected. Fig. 11 illustrates a sample
scenario, where four failed row-nodes have been
repaired. Since, the cardinality of the candidate set of
nodes is of the order of length of deployment field,
the repairing time is constant. However, if the
number of failed nodes is large or the failed child
node is a column-node, then a CDS may not be
constructed using Sprinkler’s CDS construction
algorithms. In such cases, standard CDS construc-
tion algorithms, which do not assume minimum
density, have to be applied. These algorithms do not
have a high performance ratio but also have
nonconstant time complexities.

The set Mnffg
S
fgg is a CDS. The color of the

newly selected node is the same as that of the failed
node. The intuitive proof of these two propositions
lies in the fact that the location of the selected
node in the square does not have any bearing on
Sprinkler’s CDS construction and D-2 coloring
algorithms.

A.3 State Corruption

The corruption of any of the above mentioned three
variables may result in an incorrect CDS or TDMA
scheduling. A way to repair the critical variable is to
periodically reassign values to them. The period depends
upon how frequently the state corruption occurs.
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