Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Ca2+-regulated expression of high affinity methylaminoisobutryic acid transport in hippocampal neurons inhibited by riluzole and novel neuroprotective aminothiazoles.

Abstract

High affinity methylaminoisobutyric acid(MeAIB)/glutamine(Gln) transport activity regulated by neuronal firing occurs at the plasma membrane in mature rat hippocampal neuron-enriched cultures. Spontaneous Ca2+-regulated transport activity was similarly inhibited by riluzole, a benzothiazole anticonvulsant agent, and by novel naphthalenyl substituted aminothiazole derivatives such as SKA-378. Here, we report that spontaneous transport activity is stimulated by 4-aminopyridine (4-AP) and that phorbol-myristate acetate (PMA) increases high K+ stimulated transport activity that is inhibited by staurosporine. 4-AP-stimulated spontaneous and PMA-stimulated high K+-induced transport is not present at 7 days in vitro (DIV) and is maximal by DIV∼21. The relative affinity for MeAIB is similar for spontaneous and high K+-stimulated transport (Km ∼ 50 μM) suggesting that a single transporter is involved. While riluzole and SKA-378 inhibit spontaneous transport with equal potency (IC50 ∼ 1 μM), they exhibit decreased (∼3-5 X) potency for 4-AP-stimulated spontaneous transport. Interestingly, high K+-stimulated MeAIB transport displays lower and differential sensitivity to the two compounds. SKA-378-related halogenated derivatives of SKA-75 (SKA-219, SKA-377 and SKA-375) preferentially inhibit high K+-induced expression of MeAIB transport activity at the plasma membrane (IC50 < 25 μM), compared to SKA-75 and riluzole (IC50 > 100 μM). Ca2+-dependent spontaneous and high K+-stimulated MeAIB transport activity is blocked by ω-conotoxin MVIIC, ω-agatoxin IVA, ω-agatoxin TK (IC50 ∼ 500 nM) or cadmium ion (IC50 ∼ 20 μM) demonstrating that P/Q-type CaV channels that are required for activity-regulated presynaptic vesicular glutamate (Glu) release are also required for high-affinity MeAIB transport expression at the plasma membrane. We suggest that neural activity driven and Ca2+ dependent trafficking of the high affinity MeAIB transporter to the plasma membrane is a unique target to understand mechanisms of Glu/Gln recycling in synapses and acute neuroprotection against excitotoxic presynaptic Glu induced neural injury.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View