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Abstract

We introduce and solve a semi-classical random walk (RW) model that describes the dynamics

of spin polarization waves in zinc-blende semiconductor quantum wells. We derive the dispersion

relations for these waves, including the Rashba, linear and cubic Dresselhaus spin-orbit interactions,

as well as the effects of an electric field applied parallel to the spin polarization wavevector. In

agreement with calculations based on quantum kinetic theory [Kleinert and Bryksin, Phys. Rev.

B 76, 205326 (2007)], the RW approach predicts that spin waves acquire a phase velocity in the

presence of the field that crosses zero at a nonzero wavevector, q0. In addition, we show that the

spin-wave decay rate is independent of field at q0 but increases as (q − q0)
2 for q 6= q0. These

predictions can be tested experimentally by suitable transient spin grating experiments.
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I. INTRODUCTION

Spin-orbit (SO) coupled two-dimensional electron systems are of great interest, both as

model systems and as the active component of devices that control electron spin with electric

fields.1 Unfortunately, the potential of the SO interaction to control electron spin comes

with a price - the SO terms in the Hamiltonian break SU(2) spin symmetry. The violation

of SU(2) means that electron spin polarization is not conserved, decaying instead with a

characteristic spin memory time τs. The mechanism by which SO coupling leads to spin

memory loss has been intensively investigated in two-dimensional electron gases (2DEG’s)

in semiconductor quantum wells (QW’s), as described in recent reviews.2,3 In GaAs QW’s

and related systems, breaking of inversion symmetry allows SO coupling that is linear in

the electron wavevector k.4–6 The SO terms in the Hamiltonian can be viewed as effective

magnetic fields that act only on the electron spin, with magnitude and direction that vary

with k. The loss of spin memory in the effective magnetic field, b(k), takes place through

the D’yakonov-Perel’ (DP) mechanism.7–10 In this process the electron spin precesses during

its ballistic motion between collisions; each time it is scattered b(k) and consequently the

precession vector, Ω(k), change. The net result is exponential decay of spin polarization at

a rate approximately equal to Ω2τ , where τ is the mean time between collisions.

There exist two distinct contributions to b(k), the Rashba term5,6 arising from asymmetry

of the confining potential and the Dresselhaus term11 originating in the intrinsic inversion

asymmetry of the GaAs crystal structure. A prescription for lengthening spin lifetime in

QW’s of III-V semiconductors by tuning the Rashba coupling strength (α) to equal the linear

Dresselhaus coupling (β1) was proposed by Schliemann et al.12 Recently it was recognized

that this mechanism amounts to a restoration of SU(2) symmetry even in the presence of

anisotropic SO interactions.13 The main purpose of this paper is to assess theoretically to

what extent tuning SO interactions can be expected to increase the distance over which

electron spin polarization can propagate without decay.

The potential to extend the spin propagation length despite DP spin memory decay is

based on the strong correlation between the electron’s displacement in space and the rotation

of its spin on the Bloch sphere. An important step towards a quantitative theory of such

correlations was made by Burkov et al.14 and Mishchenko et al.,15 who derived equations of

motion that describe the coupling of spin and charge current degrees of freedom in (001)
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GaAs QW’s. Initially only the linear Rashba SO coupling was examined, subsequently

Bernevig et al.13 and Stanescu and Galitski16 extended the theory to include the linear and

cubic Dresselhaus terms, respectively.

The equations of motion can be solved to obtain the normal modes of the coupled system,

which are waves of mixed electrical current and spin polarization. There exist four such

modes, reflecting three spin degrees of freedom (Sx, Sy, and Sz) and the charge density, n.

For wavevectors, q, parallel to the directions [110] and [11̄0], the four modes decouple into

two pairs; in one the spin precesses in a plane containing q and the normal direction ẑ, in the

other the current is coupled to the component of in-plane spin polarization perpendicular to

q.

The spin precession mode is the one relevant to spin polarization memory. For example,

the decay rate of this mode at q = 0 is precisely the DP decay rate, 1/τs. In the absence

of spin-space correlation, the decay rate, γq, of a spin polarization wave would increase

monotonically with q, i.e., γq = 1/τs + Dsq
2, where Ds is the spin diffusion coefficient.

Instead, it was predicted14 that for Rashba SO coupling the minimum decay rate occurs at

nonzero wavevector, at which point γq is approximately half the DP rate. Bernevig et al.13

showed theoretically that the minimum γq is further reduced when both Rashba and linear

Dresselhaus interactions are nonzero and vanishes when the strength of the two couplings

is equal. The resulting “persistent spin helix” (PSH) was shown to be a conserved quantity

of a newly found SU(2) symmetry that arises when α = β1 and the cubic Dresselhaus term

(β3) is zero.13 However, Stanescu and Galitski16 showed that perfect SU(2) is broken when

β3 6= 0, leading to large, but not infinite, PSH lifetime. Recently, using the transient spin

grating technique, Koralek et al.17 observed the PSH mode experimentally by independently

tuning the Rashba and linear Dresselhaus couplings.

The question that arises is whether the PSH effect can be exploited to lengthen the

distance that a packet of spin polarization can propagate in an applied electric field. In

this paper we address this question by analyzing the effects of an in-plane electric (E) field

on the spin-precession modes. We focus on E ‖ q, which is the orientation relevant to the

drift of spin polarization. To predict the spin memory length it is necessary to determine

how the applied field modifies both the real (ℜ) and imaginary (ℑ) parts of the normal

mode frequency, ω(q) of spin polarization modes. The real part is related to the drift
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velocity whereas the imaginary part is related to the lifetime. The modification of ℜ{ω(q)}
is linear in E (to lowest order), whereas the affect of E on ℑ{ω(q)} is quadratic. Kleinert

and Bryksin18,19 recently have treated this to problem to linear order in E, using quantum

kinetic theory, and obtained results for ℜ{ω(q)}.
In this work, we derive and solve equations of motion to quadratic order in E using a

random walk (RW) approach that is different from previous treatments of this problem.

The advantages of our approach are physical transparency and mathematical simplicity. We

construct a semiclassical random walk model that tracks the electron’s motion in real space

and the propagation of its spin on the Bloch sphere. In Sec. II, we introduce the random walk

model, derive the equations of motion in the absence of an E field, and solve for the spin wave

dispersion relations. We compare the results thus obtained with the earlier quantum kinetic

theory approaches13,16. In Sec. III, we include an in-plane E field, obtaining the equations

of motion and the dispersion relations to quadratic order. We use the dispersion relations

to analyze the motion of a spin polarization packet in the presence of the in-plane field, for

different regimes of field strength. We illustrate the results by focusing on representative SO

couplings: linear Dresselhaus coupling only, the SU(2) case where Rashba and Dresselhaus

terms are equal, and the case of SU(2) broken by a small cubic Dresselhaus term. A brief

summary is given in Sec. IV.

II. RANDOM WALK MODEL

As mentioned above, as an electron propagates between scattering events, SO coupling

causes its spin to precess. Thus, as the electron performs an RW in real space, its spin

performs an RW on the Bloch sphere. We consider a 2D electron gas with both structure

and bulk inversion asymmetry. The SO Hamiltonian for conduction band electrons in a III-V

semiconductor QW grown in the [001] direction (taken as ẑ-direction) is given by,

HSO = Ω · s, (1)

where,

Ω = 2kF

[

x̂

(

α − β1 −
2β3(v

2
x − v2

y)

v2
F

)

vy − ŷ

(

α + β1 −
2β3(v

2
x − v2

y)

v2
F

)

vx

]

, (2)
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s = ~σ/2 is the electron spin, vx and vy are the components of velocity in the [110] and

[11̄0] directions, α, β1 and β3 are dimensionless quantities describing the strength of the

Rashba, linear and cubic Dresselhaus spin-orbit couplings, respectively, and kF is the Fermi

wavevector. Spins precess about the effective SO field according to

ds

dt
= Ω × s. (3)

We assume that the impurity potential is short range so that there is no correlation

between the scattering events. In the absence of the E field, electrons perform an isotropic

2D random walk with vn (velocity between the nth and (n + 1)th scattering events) given

by vF t̂n, where t̂n = (cos θ, sin θ) is a random two-dimensional unit vector with a uniform

probability density pn(θ) = 1/2π. The displacement from nth to (n + 1)th step is given by

rn+1 − rn = vnτ, (4)

where τ is the electron scattering time. In the following we consider Ωτ , the change in angle

of the electron’s spin between scattering events, as a small parameter. In this case we can

obtain from Eq. 3 the change in the spin direction during the mean-free time as a series

expansion in Ωτ ,

∆sn ≡ sn+1 − sn = Ωnτ × sn +
1

2
Ωnτ × (Ωnτ × sn), (5)

where we retain terms to second order.

Let Pn(r) be the probability that after n steps of random walk the electron arrives at

position r and Dn(r; s) be the conditional probability that given the electron is at r, its

spin is s. The joint probability Pn(r)Dn(r; s) satisfies the following recursion relation,

Pn+1(r)Dn+1(r; s) = 〈Pn(r − vnτ)Dn(r − vnτ ; s − ∆sn)〉, (6)

where 〈〉 denotes average over t̂n, i.e., 〈An〉 =
∫ 2π

0
An(θ)pn(θ)dθ. Once Pn(r)Dn(r; s) is

determined, the magnetization can be obtained from the following integral on the Bloch

sphere,

mn(r) =

∫

S2

sPn(r)Dn(r; s)dΣ. (7)

By substituting Eq. 6 into Eq. 7, we obtain,

mn+1(r) = 〈
∫

S2

sPn(r − vnτ)Dn(r − vnτ ; s − ∆sn)dΣ〉. (8)
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Taylor series expansion of the right hand side of Eq. 8 yields,

mn+1(r) =〈
∫

S2

[s + Ωnτ × s +
1

2
Ωnτ × (Ωnτ × s)]{Pn(r)Dn(r; s)

− vnτ · ∇[Pn(r)Dn(r; s)] +
1

2
vnτ · ∇∇[Pn(r)Dn(r; s)] · vnτ}dΣ〉.

(9)

Again retaining terms to second order, we can write,

mn+1 = I1 + I2 + I3, (10)

where,

I1 =〈
∫

S2

s{Pn(r)Dn(r; s) − vnτ · ∇[Pn(r)Dn(r; s)]

+
1

2
vnτ · ∇∇[Pn(r)Dn(r; s)] · vnτ}dΣ〉,

(11)

I2 = 〈
∫

S2

[Ωnτ × s]{Pn(r)Dn(r; s) − vnτ · ∇[Pn(r)Dn(r; s)]}dΣ〉. (12)

and

I3(r) = 〈
∫

S2

[
1

2
Ωnτ × (Ωnτ × s)]{Pn(r)Dn(r; s)}dΣ〉. (13)

Upon performing the average over t̂n, all terms that linear in vn or Ωn vanish by symmetry,

leading to,

I1 = mn + Πopτ
2mn (14)

I2 = − x̂〈Ωnyvnx〉τ 2∂mnz

∂x
+ ŷ〈Ωnxvny〉τ 2 ∂mnz

∂y

+ ẑ

(

〈Ωnyvnx〉
∂mnx

∂x
− 〈Ωnxvny〉

∂mny

∂y

)

τ 2

(15)

I3 = −τ 2

2

(

x̂〈Ω2
yn〉mnx + ŷ〈Ω2

xn〉mny + ẑ〈Ω2
n〉mnz

)

(16)

where,

Πop ≡ 1

2

(

〈v2
x〉

∂2

∂x2
+ 〈v2

y〉
∂2

∂y2

)

. (17)

Taking the continuum limit mn → m(t), (mn+1 − mn) /τ → dm/dt, and substituting into

Eq. 10, we obtain the equation of motion for the magnetization vector. Resolving the vector

equation into components yields three scalar equations,

1

τ

∂mx

∂t
= Πopmx −

1

2
〈Ω2

y〉mx − 〈Ωyvx〉
∂mz

∂x
, (18)
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1

τ

∂my

∂t
= Πopmy −

1

2
〈Ω2

x〉my + 〈Ωxvy〉
∂mz

∂y
, (19)

1

τ

∂mz

∂t
= Πopmz −

1

2
〈Ω2〉mz + 〈Ωyvx〉

∂mx

∂x
− 〈Ωxvy〉

∂my

∂y
. (20)

Solving the equations of motion for eigenmodes with wavevector parallel to x̂ yields the

dispersion relation,

iω±(q)

τ
=

1

4

(

2〈Ω2〉 − 〈Ω2
x〉

)

+
1

2
〈v2

x〉q2 ±
√

〈Ω2
x〉2

16
+ q2〈Ωyvx〉2. (21)

This dispersion relation corresponds to modes in which the spin polarization spirals in the x−
z plane. Note that ω(q) is purely imaginary, so that for all wavevectors the spin polarization

wave decays exponentially with time. However, the dispersion relation differs from ordinary

diffusion, where iω ∝ 1/τ + Dq2. The difference can be traced to the terms in Eq. 15 that

are proportional to the first derivative of spin density with respect to position - these terms

are absent in the usual diffusion equation. The coefficients of these additional terms are the

cross-correlation functions, 〈Ωxvy〉 and 〈Ωyvx〉, which shows explicitly that the anomalous

diffusion is a consequence of the correlation between the electron’s motion in real space and

the propagation of its spin on the Bloch sphere.

In the SU(2) case (α = β1 and β3 = 0), Eq. 21 simplifies to,

iω±(q) =
1

4
v2

F τ (q ± q0)
2 ≡ D(q ± q0)

2, (22)

where D ≡ v2
F τ/4 and q0 ≡ 4kFβ1. The vanishing decay rate of the ω− mode at q =

q0 indicates the appearance of a conserved quantity - a helical spin polarization wave or

“persistent spin helix”.13

The dispersion relations obtained above for the spiral polarization waves are the same as

those obtained previously, including the cubic Dresselhaus term.13,16 We note, however, that

while the RW approach accurately describes the spiral coupling of x−z components of spin,

it does not capture the coupling between charge current and the y component of spin that

appears in the quantum kinetic formulation. This is because the RW approach does not

include relaxation to the equilibrium state. In other words, between consecutive scattering

events the electron’s spin precesses about b(k), but has no tendency to spiral in towards it.

Thus the well-known current-induced spin polarization (CISP) effect15 is not predicted. To
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recover CISP requires adding to Eq. 3 a phenomenological Gilbert damping term,

ds

dt
= λGs × (Ω × s) , (23)

where λG is the damping parameter.

III. SPIN HELIX DYNAMICS IN THE PRESENCE OF AN ELECTRIC FIELD

In this section, we explore how the spin dynamics change in the presence of an E field

parallel to the wavevector of the spin spiral. To include the effect of E we add a drift term

to the velocity at each random walk step,

vn = vF t̂n + vdx̂, (24)

where vd is the drift velocity assumed to be a linear function of E. We assume further

that the electric field doesn’t change the shape of the impurity potential and therefore the

scattering probability density is still uniform.

The drift velocity modifies the precession vector, adding a fixed precession

Ωd ≡ −2ŷkF

(

α + β1 −
2β3(v

2
x − v2

y)

v2
F

)

vd, (25)

to Ωn at each step of the random walk. Substituting and following the same strategy as

before, we obtain,

I1(E) = I1 − vdτ
∂m

∂x
(26)

I2(E) = I2 + Ωdτ × m (27)

I3(E) = I3 (28)

where the I1,2,3(E) are the quantities I1,2,3 evaluated in the presence of the electric field.

The field alters the equations of motion in two ways. First, new terms appear that are

linear in E. The new term added to I1 converts the time-derivative of m to the convective

derivative, that is the time derivative in a frame moving with the drifting electrons. The

term added to I2 indicates that the E field introduces uniform precession about the ŷ-axis,

when viewed in the frame co-moving with vd. The second type of modification is quadratic

in E; the field increases 〈Ω2
y〉 by the additive factor Ω2

d and the mean-square velocity 〈v2
x〉 by

the factor 〈v2
d〉.
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Solving for normal modes with wavevector parallel to x̂, we obtain,

iω±(q) =
1

4

(

2〈Ω2〉 − 〈Ω2
x〉

)

τ +
1

2
〈v2

x〉τq2 + ivdq ±
√

〈Ω2
x〉2τ 2

16
+ (q〈Ωyvx〉τ + iΩd)

2. (29)

To linear order in E, this dispersion relation is the same as that obtained by Kleinert and

Bryksin.18,19 In the presence of the electric field ω(q) acquires a real part, which describes

the propagation of spin polarization. Eq. 29 also describes the modifications of the spin

polarization lifetime that appear at second order in E. In the following we discuss the spin

dynamics that emerge from this dispersion relation for representative SO Hamiltonians.

A. SU(2) case

For the case of α = β1, β3 = 0, the dispersion relation simplifies to,

iω±(q) = D
(

1 + 2λ2
)

(q ± q0)
2 + ivd (q ± q0) , (30)

where λ ≡ vd/vF . To distinguish the lifetime and propagation effects we write the dispersion

relation in the form,

iω(q) = γ(q) + iφ̇(q), (31)

where γ(q) is the decay rate and φ̇(q) is the rate of phase advance. The real and imaginary

parts of iω−(q), corresponding to the longer-lived of the two modes, are plotted in Fig. 1.

As is apparent from Fig. 1(a), the spin polarization lifetime, 1/γ−(q) remains infinite at the

PSH wavevector, despite the presence of the electric field. This result is consistent with the

theoretical prediction that at the SU(2) point the spin helix generation operators commute

with all perturbation terms that are not explicitly spin dependent.13 However, the field

increases the effective diffusion constant by the factor λ2 so that the decay rate for q 6= q0

increases rapidly when the drift velocity approaches the thermal velocity of the electrons.

The spin helix generation operators won’t commute with the Hamiltonion if there exists a

spatial disorder of SO interactions.20,21

The rate of phase advance (plotted in Fig. 1(b)) vanishes at q = q0, i.e. the PSH is

stationary, despite the fact that the Fermi sea of electrons is moving by with average velocity

vd. Moreover, spin spirals with q < q0 will appear to move backward, that is, opposite to the

direction of electron flow. Although unusual, this property can be understood by considering
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FIG. 1: (Color online) The dispersion relations for (a) the decay rate and (b) the rate of phase

change of the SO enhanced mode in the SU(2) case. (a) The decay rate γ−(q) increases with the

drift velocity (λ ≡ vd/vF ), but always vanishes at the resonant wavevector q0. (b) The rate of phase

change φ̇−(q) is proportional to the drift velocity vd and it crosses zero at the resonant wavevector

q0.

the spin dynamics in a frame moving with velocity vd. In this frame E parallel to x̂ is

perceived as a precession vector Ωd = −4β1vdŷ = −vdq0ŷ. Therefore in the moving frame

φ±(x′, t′) = ±qx′−vdq0t. Transforming back to the lab frame then yields φ̇±(q) = vd(q±q0).

The nature of spin propagation at the SU(2) symmetry point can be made more clear

if we Fourier transform from the wavevector to spatial domain. If we inject a δ-function

stripe of z polarized spins at x = 0, the space-time evolution of Sz is proportional to the

propagator, Gz(x, t), where,

Gz(x, t) ∝
∫

dqeiqx
(

A+e−iω+t + A−e−iω
−

t
)

, (32)

where A+ and A− are the weighting factors for the passive and active modes, respectively

and A+ = A− = 1/2 in the SU(2) case. Upon substituting the dispersion relations ω±(q),

we obtain,

Gz(x, t) ∝ 1√
Dt

cos(q0x) exp

[

−(x − vdt)
2

4Dt

]

. (33)
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q0x 

6

4

2
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Dq0
2
 t

FIG. 2: (Color online) The space-time evolution of Sz with a normalized δ-function injection at

x = 0, t = 0 and drift velocity vd = 2Dq0 in the SU(2) case. The spin polarization develops into a

conserved stationary wave with a Gaussian wave packet.

The spin propagator is the product of a Gaussian envelope function and a static spin wave

with wavevector q0. The envelope function is the 1D diffusion propagator with width pro-

portional to
√

Dt and drift velocity vd. An illustration of the space-time evolution described

by this propagator is provided Fig. 2, for a drift velocity vd = 2Dq0. Note that the phase of

the spin wave modulated by the Gaussian envelope remains stationary as the packet drifts

and diffuses. This contrasts with the more familiar wavepacket, where the modulated wave

and envelope functions both propagate, albeit with velocities that may differ.

B. SU(2) broken by cubic Dresselhaus term

When SU(2) is exact, the integral of the Gaussian envelope function is conserved, even in

the presence of an E-field. However, Stanescu and Galitski16 have shown theoretically that

β3, which is nonzero in real systems, breaks SU(2). Koralek et al.17 verified experimentally

that β3 is indeed the factor that limits PSH lifetime in experiments on (001) GaAs quantum

wells. In this section we calculate the dispersion relation and spin packet time evolution in

the presence of a small cubic Dresselhaus term.
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It was shown previously that when β3 is small, the maximum lifetime occurs when the

Rashba interaction α = β1 − β3 (Ref. 16). We consider a QW with Rashba coupling tuned

to this value and assume that β3 ≪ β1. This condition is met in QW’s in the 2D limit,

where kFd ≪ 1 (d is the well width). In this case the dispersion relation in the presence of

the electric field can be written,

iω±(q) ∼= 6Dk2
Fβ2

3 + D (q ± q0)
2 + ivd (q ± q0) ∓ ivd∆q, (34)

where q0 ≡ 4kF (β1 − β3) and ∆q = 2kFβ3. Performing the Fourier transform to obtain the

space-time evolution of a spin packet, we obtain,

Gz(x, t) ∝ 1√
Dt

e−6Dk2
F

β2
3t cos(q0x − vd∆qt) exp

[

−(x − vdt)
2

4Dt

]

. (35)

In the presence of the cubic Dresselhaus interaction the integral of the Gaussian envelope is

no longer conserved. The decay rate can be written in the form,

γ =
3

8
Dq2

0

(

β3

β1

)2

, (36)

illustrating that although the decay rate is nonzero, it is reduced relative to the DP relaxation

rate by a factor ≈ (β3/β1)
2. This ratio is expected theoretically,22 and has been verified

experimentally,17 to be determined by the relation,

β3

β1

=
k2

F d2

4π2
. (37)

For quite reasonable QW parameters a β3 to β1 ratio of 1:100 can be achieved, equivalent to

a lifetime enhancement relative to the DP spin memory time on the order of 104.

C. Linear Dresselhaus coupling

Finally, we consider a fully symmetric well in which only the linear Dresselhaus coupling

exists. To make comparison with the SU(2) situation, we set the strength of the linear

Dresselhaus coupling be 2β1, so that the resonant wavevector is at q ≃ q0 = 4kFβ1. The

dispersion relations γ−(q) and φ̇−(q) obtained by substituting α = β3 = 0 and replacing β1

by 2β1 in Eq. 29 are plotted in Fig. 3. Some qualitative features of the dispersion relations

are similar to the SU(2) case, in that γ−(q) has a global minimum and φ̇−(q) crosses zero at
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q ≃ q0. The most important difference is that the minimum γ−(q) does not reach zero, and

therefore the spin spiral does decay. In the limit of low electric field, the lifetime of the spin

spiral is only about a factor of two longer than the q = 0 (DP) lifetime.

The propagation of a spin packet in the linear Dresselhaus only case is illustrated in

Fig. 4, using the same initial condition and drift velocity as in SU(2) case. We performed

numerical integration of Eq. 32 to obtain the propagator. As we have seen previously, a

drifting and diffusing envelope function modulates a spiral spin wave. However, now the

spiral spin fades very quickly. The contrast between linear-Dresselhaus-only and SU(2) is

illustrated in Fig. 5, which is a plot of the integral of the envelope as a function of time.

After a rapid initial decay, the integral is constant in the SU(2) case, whereas with only

the linear Dresselhaus interaction the integrated amplitude decays exponentially with rate

≃ Dq2
0.

Fig. 6 presents another way of visualizing the difference in propagation for the SU(2)

(Fig. 6(a)) and linear-Dresselhaus-only (Fig. 6(b)) Hamiltonians. The z component of spin

polarization is shown (with color coded amplitude) as a function of time on the vertical axis

and position on the horizontal axis. It is clear, from the vertical orientation of the contours

that the positions of the nodes and antinodes of Sz are fixed in space.

IV. SUMMARY AND CONCLUSION

We have developed a random walk model to describe the time evolution of electron spin in

two-dimensions in the presence of Rashba and Dresselhaus interactions. From the random

walk model we derived equations of motion for spin polarization and obtained dispersion

relations for q parallel to one of the symmetry directions of the Rashba/Dresselhaus Hamil-

tonian. In section II, we showed that the dispersion relations for spin polarization waves that

spiral in the plane containing the surface normal and the wavevector are identical to those

obtained from previous analyses.13,16 The random walk approach is instructive in showing,

in a simple but explicit way, how anomalous spin diffusion and the persistent spin helix arise

from nonvanishing correlations between the velocity and spin precession vectors.

In section III, we obtained dispersion relations for spin polarization waves that include

the effects of an electric field parallel to q, to second order in E. The terms linear in E

13
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FIG. 3: (Color online) The dispersion relations for (a) the decay rate and (b) the rate of phase

change of the SO enhanced mode in the linear Dresselhaus only case. The main features resemble

those in the SU(2) case, both γ−(q) show a minimum and φ̇−(q) vanishes at q0, but the lifetime is

finite in this case.
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FIG. 4: (Color online) The space-time evolution of Sz in the linear Dresselhaus only case with the

same initial condition and applied E field as in the SU(2) case. The features are similar to those

in the SU(2) case, except the envelope function decays exponentially.
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FIG. 6: (Color online) The space-time images of the spin polarization in the (a) SU(2) and (b)

linear Dresselhaus only cases, respectively.

are equivalent to those obtained from the quantum kinetic approach.18,19 To first order in

E, the field introduces a precession vector in the plane of the 2DEG and perpendicular to

E. The precession about the y-axis gives rise to an unusual behavior in that the spiral with

wavevector q0 is stationary in space despite the motion of electrons in the field; waves with

15



q > q0 propagate in the same direction as the drifting electrons while those with q < q0

propagate “backwards”. The terms that are second order in E affect the decay rate of spin

polarization without changing the velocity. The solutions obtained when these terms are

included point to the special properties of waves with wavevector q0, whose lifetime turns

out to be unchanged by the field. However, the decay rate of the all other waves increases,

in proportion to (q − q0)
2.

We illustrated these results by considering three representative spin orbit Hamiltonians:

SU(2) symmetric or α = β1 and β3 = 0; SU(2) broken by a small, but nonzero β3; and linear

Dresselhaus coupling only or α = β3 = 0. In order to show the nature of spin propagation

more clearly, we Fourier transformed the solutions from wavevector to real space and obtained

the dynamics of spin polarization packets. In all cases the spin packets move at the electron

drift velocity. In the SU(2) case the integrated amplitude of the spin spiral is conserved,

while in the linear Dresselhaus only case the amplitude decays with a rate ∼ Dq2
0. When

SU(2) is weakly broken by small, but nonzero β3, the integrated amplitude decays at a rate

∼ (β3/β1)
2Dq2

0.

The conclusions reached by our analysis of the RW model are consistent with a recent

Monte Carlo study of a specific 2DEG system, a (001) In1−xGaxAs quantum well with carrier

density ∼ 1012 cm−2 (Ref. 23). In this study spin polarization dynamics were calculated

under conditions of steady state injection from a ferromagnetic contact. For α/β1 ratios that

are close to unity, the spin polarization is conserved over several wavelengths of the PSH,

despite the fact that transport takes place in the diffusive regime. Moreover, the polarization

is not diminished with increasing electric field. The authors point out that the PSH effect can

be used to achieve a novel variation of the Datta-Das spin-FET24 in which a gate electrode

modulates the α to β1 ratio only slightly away from unity. This has the effect of varying

the wavelength of the PSH without significantly reducing its lifetime. Thus small changes in

gate voltage can in principle lead to large changes in source to drain conductance. Whether

such a device can actually be realized depends on two factors: fabricating ferromagnetic

injectors and analyzers with high figures of merit, and demonstrating that the PSH effects

that have been observed at temperatures below ∼ 100 K (Ref. 17) can be realized at room

temperature.

16



Acknowledgments

This work was supported by the Director, Office of Science, Office of Basic Energy Sci-

ences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under

Contract No. DE-AC02-05CH11231.

1 T. Dietl, D. D. Awschalom, M. Kaminska, and H. Ohno, eds., Spintronics, vol. 82 of Semicon-

ductors and semimetals (Academic Press, 2008).

2 J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Žutić, acta physica slovaca 57, 565
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