Plant Physiological Responses to Rising CO 2 Modify Simulated Daily Runoff Intensity With Implications for Global‐Scale Flood Risk Assessment
Skip to main content
eScholarship
Open Access Publications from the University of California

Plant Physiological Responses to Rising CO 2 Modify Simulated Daily Runoff Intensity With Implications for Global‐Scale Flood Risk Assessment

  • Author(s): Kooperman, Gabriel J
  • Fowler, Megan D
  • Hoffman, Forrest M
  • Koven, Charles D
  • Lindsay, Keith
  • Pritchard, Michael S
  • Swann, Abigail LS
  • Randerson, James T
  • et al.
Abstract

©2018. American Geophysical Union. All Rights Reserved. Climate change is expected to increase the frequency of flooding events and, thus, the risks of flood-related mortality and infrastructure damage. Global-scale assessments of future flooding from Earth system models based only on precipitation changes neglect important processes that occur within the land surface, particularly plant physiological responses to rising CO2. Higher CO2 can reduce stomatal conductance and transpiration, which may lead to increased soil moisture and runoff in some regions, promoting flooding even without changes in precipitation. Here we assess the relative impacts of plant physiological and radiative greenhouse effects on changes in daily runoff intensity over tropical continents using the Community Earth System Model. We find that extreme percentile rates increase significantly more than mean runoff in response to higher CO2. Plant physiological effects have a small impact on precipitation intensity but are a dominant driver of runoff intensification, contributing to one half of the 99th and one third of the 99.9th percentile runoff intensity changes.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View