Skip to main content
eScholarship
Open Access Publications from the University of California

Spontaneous transmembrane helix insertion thermodynamically mimics translocon-guided insertion.

  • Author(s): Ulmschneider, Martin B
  • Ulmschneider, Jakob P
  • Schiller, Nina
  • Wallace, BA
  • von Heijne, Gunnar
  • White, Stephen H
  • et al.
Abstract

The favourable transfer free energy for a transmembrane (TM) α-helix between the aqueous phase and lipid bilayer underlies the stability of membrane proteins. However, the connection between the energetics and process of membrane protein assembly by the Sec61/SecY translocon complex in vivo is not clear. Here, we directly determine the partitioning free energies of a family of designed peptides using three independent approaches: an experimental microsomal Sec61 translocon assay, a biophysical (spectroscopic) characterization of peptide insertion into hydrated planar lipid bilayer arrays, and an unbiased atomic-detail equilibrium folding-partitioning molecular dynamics simulation. Remarkably, the measured free energies of insertion are quantitatively similar for all three approaches. The molecular dynamics simulations show that TM helix insertion involves equilibrium with the membrane interface, suggesting that the interface may play a role in translocon-guided insertion.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View