Skip to main content
eScholarship
Open Access Publications from the University of California

Evidence for assembly of prions with left-handed beta-helices into trimers

  • Author(s): Govaerts, C
  • Wille, H
  • Prusiner, S B
  • Cohen, F E
  • et al.
Abstract

Studies using low-resolution fiber diffraction, electron microscopy, and atomic force microscopy on various amyloid fibrils indicate that the misfolded conformers must be modular, compact, and adopt a cross-beta structure. In an earlier study, we used electron crystallography to delineate molecular models of the N-terminally truncated, disease-causing isoform (PrPSc) of the prion protein, designated PrP 27-30, which polymerizes into amyloid fibrils, but we were unable to choose between a trimeric or hexameric arrangement of right- or left-handed beta-helical models. From a study of 119 all-beta folds observed in globular proteins, we have now determined that, if PrPsc follows a known protein fold, it adopts either a beta-sandwich or parallel beta-helical architecture. With increasing evidence arguing for a parallel beta-sheet organization in amyloids, we contend that the sequence of PrP is compatible with a parallel left-handed beta-helical fold. Left-handed beta-helices readily form trimers, providing a natural template for a trimeric model of PrPSc. This trimeric model accommodates the PrP sequence from residues 89-175 in a beta-helical conformation with the C terminus (residues 176-227), retaining the disulfide-linked alpha-helical conformation observed in the normal cellular isoform. In addition, the proposed model matches the structural constraints of the PrP 27-30 crystals, positioning residues 141-176 and the N-linked sugars appropriately. Our parallel left-handed beta-helical model provides a coherent framework that is consistent with many structural, biochemical, immunological, and propagation features of prions. Moreover, the parallel left-handed beta-helical model for PrPSc may provide important clues to the structure of filaments found in some other neurodegenerative diseases.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View