Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Analysis of high‐throughput screening assays using cluster enrichment

Published Web Location

https://doi.org/10.1002/sim.5455
Abstract

In this paper, we describe the implementation and evaluation of a cluster-based enrichment strategy to call hits from a high-throughput screen using a typical cell-based assay of 160,000 chemical compounds. Our focus is on statistical properties of the prospective design choices throughout the analysis, including how to choose the number of clusters for optimal power, the choice of test statistic, the significance thresholds for clusters and the activity threshold for candidate hits, how to rank selected hits for carry-forward to the confirmation screen, and how to identify confirmed hits in a data-driven manner. Whereas previously the literature has focused on choice of test statistic or chemical descriptors, our studies suggest that cluster size is the more important design choice. We recommend clusters to be ranked by enrichment odds ratio, not by p-value. Our conceptually simple test statistic is seen to identify the same set of hits as more complex scoring methods proposed in the literature do. We prospectively confirm that such a cluster-based approach can outperform the naive top X approach and estimate that we improved confirmation rates by about 31.5% from 813 using the top X approach to 1187 using our cluster-based method.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View