Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Labyrinthin: A distinct pan-adenocarcinoma diagnostic and immunotherapeutic tumor specific antigen

Abstract

Structural analysis and detection of optimal cell surface localization of labyrinthin, a pan-adenocarcinoma target, was studied with respect to adenocarcinoma specificity vs. normal and non-adenocarcinoma cells. Patient-derived tissue microarray immunohistochemistry (IHC) was performed on 729 commercially prepared tissue blocks of lung, colon, breast, pancreas, prostate, and ovary cancers combined, plus a National Cancer Institute (NCI) tissue microarray derived from another 236 cases. The results confirmed that anti-labyrinthin mouse monoclonal MCA 44-3A6 antibody recognized adenocarcinomas, but not normal or non-adenocarcinoma cancer cells. The consensus of multiple topology analysis programs on labyrinthin (255 amino acids) estimate a type II cell membrane associated protein with an N-terminus signal peptide. However, because the labyrinthin sequence is enveloped within the 758 amino acids of the intracellular aspartyl/asparaginyl beta-hydroxylase (ASPH), a purported tumor associated antigen, standard IHC methods that permeabilize cells can expose common epitopes. To circumvent antibody cross-reactivity, cell surface labyrinthin was distinguished from intracellular ASPH by FACS analysis of permeabilized vs non-permeabilized cells. All permeabilized normal, adeno-and non-adenocarcinoma cells produced a strong MCA 44-3A6 binding signal, likely reflecting co-recognition of intracellular ASPH proteins along with internalized labyrinthin, but in non-permeabilized cells only adenocarcinoma cells were positive for labyrinthin. Confocal microscopy confirmed the FACS results. Labyrinthin as a functional cell-surface marker was suggested when: 1) WI-38 normal lung fibroblasts transfected with labyrinthin sense cDNA displayed a cancerous phenotype; 2) antisense transfection of A549 human lung adenocarcinoma cells appeared more normal; and 3) MCA44-3A6 suppressed A549 cell proliferation. Collectively, the data indicate that labyrinthin is a unique, promising adenocarcinoma tumor-specific antigen and therapeutic target. The study also raises a controversial issue on the extent, specificity, and usefulness of ASPH as an adenocarcinoma tumor-associated antigen.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View