Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Plastic deformation mechanism of calcium-silicate hydrates determined by deviatoric-stress Raman spectroscopy

Abstract

Creep of the cement matrix affects the structural stability of concrete. In Portland cements, the creep is largely controlled by the binding phase calcium-(aluminum-)silicate-hydrate, or C-(A-)S-H. This phase has a lamellar structure and under deviatoric stress aligns its c-axis with the principal stress. However, the limiting resistance to this reorientation is unknown at the nanocrystalline level. Small-angle X-ray scattering shows that the lamellae thickness decreases under 100's MPa deviatoric stress. Deviatoric stress Raman spectroscopy shows that there are two ways that this break-up can occur. If the material's silicate chains are cross-linked, then strain in Si–O bonds does not increase above certain stresses, indicating a relaxation adjacent to the Si–O bond. If the chains are not cross-linked, then the silicate chains are broken up by rastering against each other, introducing defects. These results show that the plastic deformation of C-(A-)S-H is relevant for Portland cement creep.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View