Skip to main content
eScholarship
Open Access Publications from the University of California

Effects of distributed generation on voltage levels in a radial distribution network without communication

  • Author(s): Auld, AE
  • Brouwer, J
  • Smedley, KM
  • Samuelsen, S
  • et al.

Published Web Location

https://doi.org/10.1115/1.4001050Creative Commons Attribution 4.0 International Public License
Abstract

The challenges associated with incorporating a large amount of distributed generation (DG), including fuel cells, into a radial distribution feeder are examined using a dynamic MATLAB/SIMULINK™ model. Two generic distribution feeder models are used to investigate possible scenarios where voltage problems may occur. Modern inverter topologies make ancillary services, such as on-demand reactive power generation/consumption economical to include, which expands the design space across which DG can function in the distribution system. The simulation platform enables testing of the following local control goals: DG connected with unity power factor, DG and load connected with unity power factor, DG connected with local voltage regulation (LVR), and DG connected with real power curtailment. Both the LVR and curtailment strategies can regulate the voltage of the simple circuit case, but the circuit utilizing a substation with load drop compensation has no universal solution. Even DG with a penetration level around 10% of rated circuit power can cause overvoltage problems with load drop compensation. The real power curtailment control strategy creates the best overall circuit efficiency, while all other control strategies result in low light load efficiency at high DG penetrations. The lack of a universal solution implies that some degree of communication will be needed to reliably install a large amount of DG on a distribution circuit. © 2010 American Society of Mechanical Engineers.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View