Skip to main content
eScholarship
Open Access Publications from the University of California

Microbial metabolism: Optimal control of uptake versus synthesis

Published Web Location

https://doi.org/10.7717/peerj.267
Abstract

Microbes require several complex organic molecules for growth. A species may obtain a required factor by taking up molecules released by other species or by synthesizing the molecule. The patterns of uptake and synthesis set a flow of resources through the multiple species that create a microbial community. This article analyzes a simple mathematical model of the tradeoff between uptake and synthesis. Key factors include the influx rate from external sources relative to the outflux rate, the rate of internal decay within cells, and the cost of synthesis. Aspects of demography also matter, such as cellular birth and death rates, the expected time course of a local resource flow, and the associated lifespan of the local population. Spatial patterns of genetic variability and differentiation between populations may also strongly influence the evolution of metabolic regulatory controls of individual species and thus the structuring of microbial communities. The widespread use of optimality approaches in recent work on microbial metabolism has ignored demography and genetic structure. ©2014 Frank.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View