Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Precision and bias of carbon storage estimations in wetland and mangrove sediments.

Abstract

Peaty sediments in coastal wetlands play an important role in the sequestration of atmospheric carbon dioxide and its belowground storage. Sediment cores are used to quantify organic matter (OM) density, estimated by multiplying the bulk density of a core segment by its OM fraction. This method can be imprecise, as repeated samples often differ widely. Recent studies have shown that sediment bulk density and OM fraction are not independent but tightly related by a function called the ideal-mixing model. Thus, the bulk density of the sediment can be directly estimated from its OM fraction. Statistical theory and simulations demonstrate that the high variance in the product estimation of OM density is the result of error propagation in the product of two functionally related variables with independent errors. Estimating OM density in wetland sediments using the ideal-mixing model is more precise than the traditionally used product estimate, especially in highly organic sediments.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View