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Abstract

We study the regulation of open-access resources under long implementation hori-
zons. Our theoretical model clarifies when and how future regulation creates ei-
ther an anticipatory decline or perverse incentives to accelerate extraction (a “Green
Paradox”). Then, we evaluate the early effects of a major groundwater regulation in
California that does not yet bind. We assemble new data and compare within pairs
of neighboring agencies that face varying restrictions on extraction. Differences in
future regulation do not affect measures of water-intensive investments or ground-
water extraction today. The absence of anticipatory response in either direction can
be explained by high private discount rates.
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1 Introduction

Policies in natural resource management often face a long implementation horizon. While
a gas tax increase may occur with only weeks or months of notice to drivers, carbon
targets may be set decades in advance. A long runway can allow for a smooth transition,
or alternatively introduce perverse incentives as people race to extract or consume the
resource before the regulation binds. Knowing when anticipatory responses are likely
to help or hinder the implementation of a policy goal is crucial for understanding both
optimal policy design and how policies interact with their political economy context.

In the case of non-renewable resources like fossil fuels, these perverse incentives are
known as the “Green Paradox”: extraction restrictions in the future reduce scarcity rents
today, leading extractors to substitute toward the present and undermining the original
policy goals (Sinn, 2008). However, the conditions under which a Green Paradox might
occur for renewable or common-pool resources like fisheries and groundwater remain
unclear.

This paper studies the anticipatory effects of regulation in the context of groundwa-
ter resources. First, we develop a theoretical model that formalizes the conditions under
which future regulation gives rise to anticipatory effects in either direction. We show that
a Green Paradox can occur for groundwater, but not in open access – when an aquifer
is shared among many extractors, each extractor already lacks incentive to save for the
future, leaving no opportunity to profitably increase extraction in response to impending
regulation. However, when farmers are allowed to make water-intensive capital invest-
ments (such as planting orchards or drilling new wells), it is possible for future regulation
to decrease extraction now, smoothing the regulatory transition. The net effect of future
regulation on extraction in the presence of investment opportunities then becomes an em-
pirical question.

Using this theoretical lens, we empirically evaluate the ongoing effects of California’s
Sustainable Groundwater Management Act of 2014 (SGMA), arguably the largest-ever
regime shift in groundwater management policy in the United States. SGMA provides a
useful empirical setting because its decentralized structure gives rise to rich policy vari-
ation across the state. Hundreds of new groundwater management agencies are charged
with halting groundwater depletion within their jurisdictions by the year 2040. (Pre-
viously, most groundwater use in California was not governed by binding regulations.)
Areas with greater overdraft at baseline must impose greater future reductions in ground-
water extraction to achieve sustainability.1

1Overdraft refers to the difference between groundwater extraction and recharge through percolation
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We use this variation to test how SGMA has affected groundwater extraction and
water-intensive agricultural investments to date. Our research design compares changes
over time for cropland in neighboring groundwater basins. Within each pair of neighbors,
one basin is subject to greater future pumping reductions than the other, yet other fac-
tors such as crop suitability or prior groundwater development are similar. We consider
only cropland within a relatively close distance of the boundaries and pool all cases of
neighboring basins, forming a stacked-pair differences-in-differences design.

We consider two types of capital investment: new plantings of perennial crops (such
as orchards or vineyards) and construction of new groundwater wells for irrigation. These
investments are both observable (through satellite data products and regulatory reports)
and the most relevant to groundwater policy in the context of California, where essentially
all cropland is irrigated, farmers produce a diverse mix of annual and perennial crops, and
groundwater constitutes a significant portion of the water supply.2 As for extraction,
groundwater pumping is generally unmonitored throughout California and therefore un-
observed. As a close proxy, we form an index of water use by combining remote sensing
land-use data with scientific estimates of water use by crop.3

Measuring future extraction restrictions is not straightforward, due to high scientific
uncertainty and lack of agreement over the volume of reductions that will be necessary in
the future to halt further depletion in each basin. For anticipatory responses, what matters
is extractors’ own beliefs, but these are not directly observable. Instead, we assemble
measures of overdraft volume and planned future reductions as stated in Groundwater
Sustainability Plans (GSPs) submitted by each local groundwater agency to the state.
These plans were the product of lengthy public participation and negotiation processes
with local stakeholders, so they are likely the best information extractors have about their
own future restrictions. Still, it is possible that numbers in GSPs are strategically underes-
timated and that extractors are aware. We therefore obtain a third estimate by running one
of the main hydrological models commonly used for water resource planning in Califor-

and lateral flow. Overdraft mechanically results in a decline in groundwater levels, referred to as depletion.)
2California’s top three crops by revenue and acreage – almonds, grapes, and pistachios – are all perma-

nent crops that feature large upfront investments (high initial capital costs plus several unproductive early
years) and long productive lives of 20 to 40 years. California’s Central Valley has undergone a major ex-
pansion of perennial fruit and nut tree crops over the past couple of decades, with implications for water
demand (Mall and Herman, 2019). In fact, since SGMA passed in 2014, acreage in perennial crops has
increased by nearly 50%. Similarly, new well construction has shown no evidence of slowing after the
passage of SGMA. Agricultural capital investments are likely to be influenced by information on future
water supply (Lobell and Field, 2011; Arellano-Gonzalez and Moore, 2020), and more significant changes
are expected in areas facing greater restrictions under SGMA.

3We control for the other principal source of irrigation water, surface water deliveries, and find it not to
affect the results.
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nia. This statewide model avoids the risk of manipulation, but the GSPs may incorporate
more detailed knowledge of local hydrological systems, plus they represent the officially
stated intentions of the relevant regulatory agencies. Because no single measure is clearly
superior to the others, we average across all three measures to extract a common signal,
and explore robustness to using each measure alone.

Our results show that neither investments (new perennial crops and new well con-
struction) nor groundwater extraction (as proxied by our index of water use) have changed
as result of SGMA. All three outcomes followed very similar patterns across neighbor-
ing basins that face greater and lesser future pumping restrictions, both before and after
SGMA passed and began to be implemented. Confidence intervals are tight, and results
are robust to alternative sample definitions, treatment variables, and specifications.

To interpret the empirical results, one tempting explanation might be that the transition-
smoothing and Green Paradox effects operate in opposite directions and cancel each other
out. But our theoretical model shows that we can rule out this scenario, since both invest-
ment and extraction have not changed post-SGMA. Instead, the null effects imply that
either (1) high private discount rates shrink all anticipatory motives, or (2) groundwater
users’ beliefs of future regulatory stringency are much lower than implied by law and the
best available science.

Our paper makes three main contributions. First, our theoretical model extends a
branch of literature that evaluates the anticipatory effects of regulation to include open-
access conditions. Stemming from the seminal paper by Hotelling (1931), a rich theoret-
ical literature exists explaining how preemptive resource extraction is altered by policies
and other factors over time in the presence of well-defined property rights (Sinn, 1982;
Cairns, 2014). This literature considers the endogeneity of total extraction (Heal, 1976),
the role of imperfect substitutes (Di Maria et al., 2012) and backstop technologies, and
spatial leakage. Second, we expand the model to allow users to invest in water-intensive
production technology to more broadly characterize the means with which actors can
increase extraction. This allows the model to depict a range of possible outcomes and
enables us to characterize scenarios as a function of setting-specific parameters.

Finally, we add to a scant empirical literature that seeks to test the Green Paradox
in real-world settings with the first application to groundwater (McDermott et al., 2019;
Van der Ploeg and Withagen, 2020). Our study sheds light on how farmers are responding
in anticipation of the policy, and contributes new empirical evidence on the preemptive
effects to environmental policies. Empirical studies of the Green Paradox have focused
on climate and fossil fuel policy (Di Maria et al., 2014; Lemoine, 2017; Jensen et al.,
2020), land development in response to the Endangered Species Act (List et al., 2006),

3



and fisheries (McDermott et al., 2019), with mixed results. In the groundwater context,
we find no evidence that perverse preemptive behavior is undermining the policy goal,
yet we also do not find evidence that farmers are making early adjustments to meet the
regulatory targets.

Many of the world’s most productive agricultural regions are experiencing significant
declines in groundwater levels and storage (Wada et al., 2010). In addition to the external-
ity issues that arise from the open-access nature of the resource, groundwater also plays
a key role in adaptation to climate change because it serves as a buffer to surface water
scarcity and variability, reducing drought impacts and weather risk (Tsur and Graham-
Tomasi, 1991; Hornbeck and Keskin, 2014). Despite the urgency of groundwater issues,
regulation remains rare.4 California’s SGMA has been hailed as a landmark change – a
potential model for groundwater management worldwide – and is arguably the biggest
statewide regulatory shift in U.S. groundwater history. But its long implementation hori-
zon calls into question if and when intended agricultural adjustments will actually occur.

2 Background

Groundwater reserves in California’s Central Valley have been declining over the last
several decades, raising fears about the long-term availability of the resource. Ground-
water serves as a critical buffer during periods of surface water scarcity, with average
use increasing from 40 to 80% of the water supply during drought years. The passage
of California’s Sustainable Groundwater Management Act (SGMA) in 2014 provides an
excellent opportunity to study the anticipatory effects of a natural resource policy facing
a long implementation horizon.

California’s SGMA provides a statewide framework for local agencies to manage
groundwater and bring their basins into balance. It requires Groundwater Sustainability
Agencies (GSAs) in overdrafted basins throughout California to first form, and then reach
and maintain long-term stable groundwater levels. Local agencies are given the authority
and flexibility to manage the resource however they see fit, as long as their approach is
documented in a “Groundwater Sustainability Plan” (GSP) outlined and approved by the
state. The timeline to do so is determined by a state-designated level of priority. All GSPs
for high- and medium-priority basins were required to be adopted by January 31, 2022.
The subset of GSAs managing groundwater in high- and medium-priority basins subject

4Examples of groundwater management do exist but are often at local levels and limited to small areas,
such as command-and-control policies in parts of Kansas (Drysdale and Hendricks, 2018), price controls in
parts of Colorado (Smith et al., 2017) and California (Bruno and Jessoe, 2021), or well drilling moratoria.
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to critical conditions of overdraft had to adopt a GSP two years earlier, by January 31,
2020. Once they adopt, their plans to reach sustainability by 2040 or 2042 formally go
into effect.

Sept 2014

SGMA passes

Jan 2017

Deadline to form GSA

2020-2022

Provide plan

2040-2042

Achieve sustainability

A basin is a geographic region that contains substantial groundwater resources and
delineates the area within which groundwater can easily flow laterally. California’s De-
partment of Water Resources (DWR) further divides basins into subbasins. Basins are
defined according to hydrogeological boundaries, but subbasins are defined for adminis-
trative convenience and have no hydrogeological meaning. SGMA required the formation
of at least one GSA within each groundwater subbasin in basins subject to SGMA.5 Sub-
basins could be governed by more than one GSA as long as all area is covered and certain
accounting (e.g., water budget) and monitoring was coordinated across the subbasin.6

Our empirical analysis therefore focuses on comparisons between neighboring GSAs in
adjacent subbasins, rather than between GSAs within the same subbasin (because plans
might be coordinated in unobserved ways, biasing the results), or between subbasins in
different basins (because subbasins within a basin are more similar at baseline).

SGMA created substantial variation in regulatory stringency, since basins with more
overdraft must adopt greater pumping restrictions in order to achieve sustainability. There
were 111 GSAs determined to be of high and medium priority under SGMA, together
covering the majority of agricultural land and accounting for over 95% of the groundwater
pumping in the state. Figure 1 shows a map of all groundwater basins in California
and distinguishes which are designated as critically overdrafted and subject to a slightly
shorter implementation horizon.

GSAs were required by law to conduct stakeholder engagement and outreach via pub-
lic meetings and public notices with periods of open comment, likely reducing informa-
tion barriers and increasing the salience of SGMA to landowners. SGMA also created
a role for the California Water Resources Control Board to take over management of a
given subbasin if local authorities fail to take adequate measures toward achieving sus-
tainability. Bruno et al. (2023b) argue that this role for the state as a backstop reduces the

5Basin and subbasin boundaries were defined prior to SGMA. DWR’s Bulletin 118 describes Califor-
nia’s 515 groundwater basins and subbasins.

6Each GSA is contained entirely within a single subbasin, but each subbasin may contain multiple
GSAs. In many cases, when there exists multiple GSAs that have formed within one subbasin, they have
coordinated management under one plan.
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likelihood that GSPs lack teeth or enforcement.
Understanding how sustainability is defined and implemented under the law is impor-

tant for interpreting what it means for farmers’ beliefs about their future water availability.
Sustainability under SGMA is formally defined by the use and management of groundwa-
ter in a manner that can be maintained without causing “undesirable results” in regards to
six key indicators. The six indicators include (1) chronic lowering of groundwater levels
(depletion of supply), (2) reduction of groundwater storage, (3) seawater intrusion, (4)
degraded water quality, (5) land subsidence, and (6) depletion of interconnected surface
water. Avoidance of these six features to a “significant and unreasonable” degree consti-
tutes a sustainable outcome. Plans are reviewed by the state for comprehensiveness and
sufficiency. Inadequate plans are returned for revisions. Failure to comply results in the
state coming in as the backstop and taking over control.

Despite the legal complexity, all six “undesirable results” are closely related both
physically and in regulatory plans. Achieving sustainability under SGMA is typically
discussed in terms of correcting overdraft, which is relevant for all basins and correlated
with each of the sustainability indicators. It is a well-understood metric that can be mod-
eled hydrologically. We take the task of GSAs to be to limit extraction in order to end
overdraft.

3 A Model of Groundwater Extraction in Anticipation of
Regulation

We first set up a general model of groundwater extraction in the absence of regulation. We
then introduce regulation in a future period to demonstrate when future regulation induces
the Green Paradox. In a third step, we introduce opportunities for investment.

3.1 No regulation

We assume N identical users share an aquifer. Each user i chooses a quantity of ground-
water, yit , to extract in each period t to maximize the present value of profits (or net
benefits) into the indefinite future. Users each obtain benefits from groundwater, B(yit),
that are increasing and concave in quantity. They also incur per-unit extraction (pumping)
costs, c(xit), that are decreasing in the user-specific resource stock, xit . Benefits and costs
are discounted at an interest rate r > 0.

The resource stock in each period is equal to the resource stock in the previous period
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Figure 1: Critical Overdraft Designation of California Groundwater Basins

Critically Overdrafted

Not Critically Overdrafted

Note: The figure highlights which groundwater basins
were designated as critically overdrafted. Our study fo-
cuses on groundwater agencies in the Central Valley,
which is where the majority of basins subject to SGMA
are concentrated.
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minus the mean of extraction quantities across all N users, plus natural recharge g. This
is a “bathtub” model of groundwater: the water level equalizes across the aquifer between
each period, such that each user’s extraction affects the resource stock for all users in
equal proportion. Together, each user’s private extraction problem is:

max
{yit ,xit}∞

t=0

∞

∑
t=0

(1+ r)−t
[
B(yit)− c(xit)yit

]
(1)

s.t. xi,t+1 = xit +g− 1
N ∑

N
j=0 y jt ∀t ≥ 0.

First-order conditions reveal an expression for resource rents and an Euler equation
(for proofs see Appendix Section A.1):

B′(yit)︸ ︷︷ ︸
marginal benefits

= c(xit)︸ ︷︷ ︸
marginal cost of pumping

+
1
N
(1+ r)t

µit︸ ︷︷ ︸
share of scarcity value

. (2)

B′(yit)− c(xit)︸ ︷︷ ︸
marginal net benefits now

=(1+ r)−1[B′(yi,t+1)− c(xi,t+1)
]︸ ︷︷ ︸

marginal net benefits next period

+ (1+ r)−1 1
N
[−c′(xi,t+1)]yi,t+1.︸ ︷︷ ︸

marginal effect on own pumping costs next period
(3)

Efficient extraction under complete property rights. Consider the case in which each
user’s extraction affects only their own stock, N = 1. This could represent an isolated
aquifer with very low hydraulic conductivity. Here, the user fully internalizes the effect
of depletion on their own future extraction costs. They restrain themselves in each period
– instead of extracting until current marginal benefits equal the price of extraction, they
stop sooner and leave more for future periods. Equation 2 says that marginal benefits
equal the per-unit extraction cost plus the full scarcity value µit (a.k.a. resource rent or
marginal user cost). In this case, the problem is equivalent to the social planner’s problem
for an aquifer with any value of N.

Overextraction in open access. Next, consider the limiting case as N→ ∞, represent-
ing a large aquifer with many users and high hydraulic conductivity. As N grows, each
user’s extraction affects their own stock by less and less. In the limit, each user’s share
of the scarcity value becomes 0, so Equation 2 simplifies to B′(yit) = c(xit): Marginal
benefits equal marginal costs in each period.
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This equation implicitly defines the extraction quantity yit , since there is only one
solution for any value of the resource stock xit . Users extract every unit for which the
benefits exceed the extraction costs. They do not consider how their extraction today
affects future costs, since their own extraction affects the resource stock by a vanishingly
small amount. The result is overextraction as compared with social planner’s solution. In
Equation 3, the third term also becomes 0, so the equation says that the present value of
marginal net benefits is equalized across periods.

3.2 Future regulation induces Green Paradox, except in open access

Next, we consider how extraction responds to future regulation of groundwater extraction.
We model the regulation as taking the form of quantity limits on extraction. We consider
two periods of interest: Period 0 is unregulated, and period 1 is regulated. In period 0,
users are aware of the future regulation but choose extraction quantities freely. In period
1, we assume that regulation is a binding constraint: yi1 = ȳ, ∀i.7

To close the model, we assume that extraction enters a steady state in period 2, such
that xit = xi2 and therefore yit = g for all t ≥ 2. This step provides a continuation value of
the resource past our two periods of interest; without it, users would mine everything in
period 0. Specifying this continuation value as a steady state, rather than some other be-
havior, is the key that transforms the model into a finite-horizon problem and allows us to
obtain analytical solutions. Imposing it in period 2 is an approximation to the asymptotic
approach that would occur in an infinite-horizon model: Assuming quantity limits are
higher (less stringent) than natural recharge, resource stocks would fall until eventually
the regulation no longer binds and extraction declines toward the steady-state value.8

Each period can be viewed as lasting many years. In our setting, period 0 represents
the time between the passage of SGMA and its implementation, period 1 represents the
time following SGMA implementation during which groundwater levels would fall more
quickly absent SGMA, and period 2 represents the distant future in which groundwater
levels finally stabilize regardless of regulation. Including more periods in the model would

7Modeling regulation as a tax (a per-unit pumping fee) would exhibit similar dynamics, but we are
unable to obtain easily interpretable analytical expressions for that scenario. The reason is that a tax leaves
period-1 extraction as an additional free parameter, which increases algebraic complexity. More ground-
water basins are planning to comply with SGMA using quantity restrictions than pumping fees (Bruno,
Hagerty, and Wardle 2022).

8If quantity limits are lower (more stringent) than natural recharge, then resource stocks would rise until
they reach a maximum value and a new steady state begins, but this also does not change the qualitative
results. Requiring the steady state to begin in period 2 (as opposed to later) is important for obtaining
closed-form expressions but not for our qualitative results. Simulations that allow a smoother approach
over more periods obtain the same directional results.
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allow us to obtain more nuanced approach paths, first to the regulation and later to the
steady state. The qualitative results would not change, but we would lose the closed-form
analytical insights, because it would need to be simulated.

Finally, we parameterize the marginal cost function as c(x) = γ− psx, where p is the
price of energy and s is the reciprocal of aquifer storativity (p,s > 0). This parameteriza-
tion is based on laws of physics; it is a reasonable approximation for many aquifers and
most accurate for those with high hydraulic conductivity (the “bathtub” model). It can
also be viewed as a second-order approximation to the cost function.

These assumptions pin down all arguments to the maximand in equation 1 except for
three: {yi0,xi1,xi2}. How does regulatory stringency affect extraction in period 0, before
the regulation takes effect?

Proposition 1 (Green Paradox for groundwater extraction). Extraction decreases with

future extraction limits (i.e., increases with future regulatory stringency):

dyi0

dȳ
=

ps
(1+ r)NB′′(yi0)

< 0. (4)

Proof. See Appendix Section A.2.

Extraction before the regulation is implemented decreases with future extraction limits
(i.e., increases with future regulatory stringency). Announcing future regulation lowers
the benefits that users will be able to obtain from the resource in the future, so it becomes
relatively valuable to extract more of the resource before the regulation is implemented.
The regulation makes a bigger difference (i) the more expensive is energy p, (ii) the
smaller the storativity of the aquifer s−1, (iii) the lower the per-period interest rate r (i.e.,
the shorter the length of time before the regulation is implemented), (iv) the fewer people
that share the aquifer N, and (v) the steeper the slope of marginal benefits.

Corollary 1 (No Green Paradox in open access). When N is large, extraction is unaffected

by future extraction limits: limN→∞ dyi0/dȳ = 0.

Future regulation must affect resource rents in order to change extraction decisions,
and in open access there are no rents. A Green Paradox can occur for mineral resources
because when users enjoy property rights, they are already taking potential future benefits
into account and restraining their extraction relative to a static analysis. In open access,
users are already extracting every unit of groundwater for which marginal benefits are less
than marginal costs of extraction, so there is nowhere to go.
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3.3 Investment opportunities allow an early decline in extraction

Most of the realistic ways that farmers might increase their groundwater extraction do not
simply involve applying more water to the same crops, holding everything else constant.
Instead, they involve investment decisions that pay off over long periods of time.

To capture this possibility, we allow users an opportunity to invest in a water-intensive
production technology. The investment requires an initial cost of K but then delivers
greater marginal benefits for any amount of extraction. This setup naturally describes
investment in a perennial crop, and it shares basic features with the decision of investment
in well construction.9

To obtain closed-form expressions, we use a second-order approximation to the ben-
efit function and assume that the investment increases marginal benefits by a constant:
B0(y) = ay− 1

2by2 and BI(y) = (a+β )y− 1
2by2, where a,b,β > 0.

Users face a two-stage problem. First, a user chooses whether to make the investment,
by comparing the present value of profits with and without the investment. Second, the
user chooses extraction quantities to maximize profits, as before, given the investment
decision. The problem is:

Invest if:
∞

∑
t=0

(1+ r)−t
[
BI(yI

it)− c(xI
it)y

I
it

]
−K ≥

∞

∑
t=0

(1+ r)−t
[
B0(y0

it)− c(x0
it)y

0
it

]
where yI

it , xI
it , y0

it , and x0
it are the solutions to the extraction problem in section 3.2, with

and without investment.
We study three questions: (1) how investment affects current extraction, (2) how future

regulation affects investment, and (3) how future regulation affects extraction as the result
of investment.

Lemma 1 (Effect of investment on extraction). Investment increases extraction in period

0:

yI
i0− y0

i0 = β/b > 0. (5)

Proof. See Appendix Section A.3.

Investment increases period-0 extraction simply because it increases the marginal ben-
efits from extraction in period 0. Extracting more in period 0 does increase extraction

9Well construction is also an up-front investment that pays off over time, with payoffs increasing in
extraction. We omit an explicit model of the well construction decision because it would require allowing
the marginal cost function either to depend on yit (reflecting a cone of depression within each period) or to be
non-convex in xit (reflecting cost discontinuities as wells go dry and must be replaced). Either modification
would preclude closed-form solutions for our expressions of interest.
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costs in the future, but the marginal cost of this scarcity value is flat in period-0 quantity
extracted and does not depend on the investment.

Next, to study how regulation in period 1 affects investment, we define the return on
investment Θ, the net present value of the investment excluding the initial cost Ki. We
assume the initial cost is a continuous random variable that follows a cumulative density
function FK; the probability density function is fK . A user invests if Θ≥Ki, so the greater
the return on investment, the more likely a user is to invest.

Proposition 2 (Effect of future regulation on investment and resulting extraction). Future

extraction limits may either increase or decrease both investment and extraction as the

result of investment:

dIi

dȳ
= fK(Θ)β (1+ r)−1

[
1− ps

bN

]
. (6)

while extraction as the result of investment is (yI
i0− y0

i0)(dIi/dȳ). When bN < ps, a de-

crease in extraction limits (i.e., an increase in regulatory stringency) raises the proba-

bility of investment (equivalently, the share of users who invest), as well as extraction as

the result of investment (dIi/dȳ < 0). It lowers investment and resulting extraction when

bN > ps (dIi/dȳ > 0), and it has no effect when bN = ps (dIi/dȳ = 0).

Proof. For Equation 6, see Appendix Section A.4. The extension to extraction quantities
follows immediately by combining this equation with Lemma 1.

Equation 6 says that the effect of future extraction limits on investment depends on the
benefits and the costs of the additional allowed extraction in period 1. The first term is the
benefits of this extraction: It represents the direct effect of regulation, the relatively greater
marginal benefits under investment. When more extraction is allowed, the marginal ben-
efits of that extraction are greater with investment, so the investment is more attractive.
(More stringent extraction limits reduce the available marginal benefits of investment, so
investment is less attractive.)

The second term is the costs of this extraction. A marginal rise in allowed extraction
increases total extraction costs by the marginal cost of extraction. Because the invest-
ment leads the user to increase period-0 extraction, reducing the stock in period 1, those
marginal extraction costs increase, making the investment less attractive. (This second
term is the increase in period-0 extraction caused by the investment, multiplied by the
marginal increase in period-1 extraction costs caused by the reduced stocks.)

As for extraction, the results show that future extraction limits affect period-0 extrac-
tion not just directly, as in Proposition 1, but also through the channel of investment.
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If future regulation makes investment more attractive, then period-0 extraction increases,
because we know from Lemma 1 that investment increases extraction. If future regulation
makes investment less attractive, the forgone investment would have increased period-0
extraction, so period-0 extraction decreases as the result of the investment opportunity.

3.4 Net effects of regulation are theoretically ambiguous

With the opportunity for investment, we have multiple simultaneous effects. As a result
of stricter future regulation, groundwater users will increase current extraction, exhibiting
a Green Paradox conditional on investment (Proposition 1). At the same time, they may
decrease investment in water-intensive production technologies, reducing extraction in
anticipation of the regulation – or alternatively increase it (Proposition 2). Considering
all these effects, we can summarize how future regulation affects extraction overall.

Proposition 3 (Net effect of future regulation on investment and extraction). The effect

of future regulation on current extraction, in total through all channels, is:

dyi0

dȳ
= (1+ r)−1

(
1+ fK(Θ)

β 2

b

)[
ξ
−1− ps

bN

]
(7)

and the directional effects of tightening future extraction limits on current investment and

extraction depend on the following conditions:
Condition Investment Net Extraction

bN < ps Rises
(
dI/dȳ < 0

)
Rises

(
dyi0/dȳ < 0

) [Green Paradox]

bN = ps No effect
(
dI/dȳ = 0

)
ps < bN < psξ

Falls
(
dI/dȳ > 0

) [Mixed results]

bN = psξ No effect
(
dyi0/dȳ = 0

)
bN > psξ Falls

(
dyi0/dȳ > 0

)
[Early decline]

where ξ :=
(

fK(Θ)β 2

b

)−1
+1.

Proof. Results for investment are restated from Proposition 2. For extraction, we write
current extraction as a function of the regulation through both direct and indirect channels:
yi0 = yi0(ȳ, Ii(ȳ)). Totally differentiating with respect to ȳ gives

dyi0

dȳ
=

∂yi0

∂ ȳ
+
(
yI

i0− y0
i0
)dIi

dȳ
.

The first term is given in Proposition 1 (i.e., ∂yi0/∂ ȳ is dyi0/dȳ conditional on the invest-
ment decision) and the second is given in Proposition 2. The remaining algebra is given
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in Appendix Section A.5.

The results show three main regimes (plus two edge cases):

1. With few users or flat marginal benefits (low bN), investment can actually exac-
erbate the Green Paradox. The regulation increases overall extraction in period 0,
both directly, conditional on investment decisions (Proposition 1), and indirectly,
through increased investment in the technology.

2. In open access or with steep marginal benefits (large bN), regulation reduces in-
vestment and extraction as a result, and this effect outweighs any Green Paradox
tendency to increase extraction conditional on investment.

3. In between, there is an intermediate range of values for which regulation reduces
investment while also increasing extraction. Extraction falls because of reduced
investment, but not by enough to outweigh the Green Paradox increase conditional
on investment.

Of course, these conditions do not guarantee that the effects are large; a high value of the
discount rate r can make Equation 7 arbitrarily small.

4 Data and Descriptive Statistics

To take our theory to data, we assemble measures of groundwater extraction and water-
intensive investment for all agricultural land in California subject to SGMA. For invest-
ment, the outcomes we can observe are the construction of agricultural wells (from well
completion reports) and the conversion of land to perennial crops such as orchards and
vineyards (from a satellite-based land use data product). For extraction, we form an index
of water use by combining the same satellite data on land use with scientific estimates
of water use by crop. We also assemble several estimates of expected future groundwa-
ter regulations (for the treatment variable) and surface water deliveries (for an important
control variable).

Summary statistics are reported in Table 1. The full sample consists of yearly obser-
vations during 1993-2022 of all land within GSAs subject to SGMA (i.e., designated as
medium or high priority). Each observation represents a quarter-quarter section (about 40
acres) in the Public Land Survey System.10 The paired sample consists of observations

10We aggregate spatial variables in this way in order to reduce noise and computation time without losing
much information. Hagerty (2021) shows that this division consistently keeps together common units of
land use.
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from the full sample that fall within 15 km of the boundary between a pair of neighboring
groundwater subbasins, with all such subbasin pairs stacked into one dataset. We motivate
this sample in Section 5.1.

4.1 Future Extraction Reductions Under SGMA

Our ideal treatment variable would capture farmers’ beliefs of the degree to which they
will be required to reduce their groundwater pumping in order to achieve the basin’s
sustainability goals. Because true beliefs are unobservable, we proxy for it by assembling
three different measures of the likely future reductions in extraction that will be required
in each GSA.

Our first measure, which we refer to as “modeled overdraft,” comes from the 1.0 ver-
sion of the Fine Grid California Central Valley Groundwater-Surface Water Simulation
Model (C2VSim), developed by DWR. C2VSim is one of three major statewide hydro-
logical models widely used in water resource planning in California, and the only one that
is publicly available. We run C2VSim using default parameters and obtain estimates of
the yearly volumetric change in groundwater storage for each year of the 25-year period
preceding SGMA (1992-2015).11 We aggregate gridded values to GSAs by summing over
all model grid cells whose centroid falls within each GSA boundary, and take an average
across the years of this historical period.

Our other two measures are assembled from Groundwater Sustainability Plans (GSPs)
submitted by GSAs to the state. GSPs are multi-thousand-page reports that estimate and
report overdraft as well as current and future pumping. One measure, which we refer to as
“reported overdraft,” is the volume of annual overdraft reported directly in the executive
summary of each GSP.12 The other, which we refer to as “projected reduction,” is the dif-
ference in annual groundwater extraction between “current” and “future” water budgets.
Projected reduction can differ from reported overdraft because many GSPs also project
changes in groundwater supply.

For each of these three variables, we divide the GSA-level volumes by the area of
undeveloped land in the GSA to obtain a per-acre measure of estimated future pumping
reductions for agriculture. By doing so, we assume that future reductions in extraction
will be borne exclusively by the agricultural sector and not by municipal users. This is a
reasonable approximation, since agriculture is responsible for the vast majority of ground-

11Change in storage and overdraft are conceptually very similar; however one incorporates lateral flow.
Overdraft tells us the difference between pumping (out) and recharge (in), net of lateral flows.

12Each plan contains several water budgets that are based on different subsets of historical data. The
plans state their preferred water budget and corresponding preferred overdraft estimate, which we use.
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Table 1: Descriptive Statistics

Observations Mean Std. Dev.
Full Sample
Future reductions, mean of 3 measures (AF/acre) 22137750 0.078 0.13
Projected reduction, from GSPs (AF/acre) 22137750 0.054 0.15
Reported overdraft, from GSPs (AF/acre) 22137750 0.085 0.18
Modeled overdraft, from C2VSim (AF/acre) 22137750 0.094 0.17
Crop water intensity (AF/acre) 12217269 2.2 2.1
New perennials planted (share of land) 11408667 0.0067 0.18
New wells per square mile 24447150 0.03 2.6
Stock of perennials planted (share of land) 12223572 0.14 0.35
Stock of wells per square mile 24447150 0.95 32
Surface water deliveries (AF/acre) 24447150 1.3 2.3
Paired Sample
Future reductions, mean of 3 measures (AF/acre) 13924988 0.12 0.16
Projected reduction, from GSPs (AF/acre) 13924988 0.086 0.19
Reported overdraft, from GSPs (AF/acre) 13924988 0.13 0.22
Modeled overdraft, from C2VSim (AF/acre) 13924988 0.15 0.19
Crop water intensity (AF/acre) 7202578 2.9 1.8
New perennials planted (share of land) 6722406 0.011 0.23
New wells per square mile 13924988 0.043 3.8
Stock of perennials planted (share of land) 7202578 0.24 0.43
Stock of wells per square mile 13924988 1.3 46
Surface water deliveries (AF/acre) 13924988 1.4 2.2
Notes: This table reports units, observations, means, and standard deviations (SD) for the full and paired
samples. The full sample includes all land within GSAs as yearly observations of quarter-quarter sections.
The paired sample is the subset of observations within 15 km of the boundary between pairs of neighboring
groundwater subbasins, with all such pairs stacked into one dataset. The paired sample excludes land within

1.14 km (i.e., 1 mile×
√

(2)
2 ) of the boundary to avoid classifying wells to the wrong side of the border; well

construction data is rounded to the nearest mile for anonymity. Water is measured in acre-feet (AF). Dataset
runs 1993-2022; crop water intensity and perennials have fewer observations because they are derived from
remote sensing data available 2007-2021. New perennials planted is the first difference of the stock of
perennials planted, so it is not calculable for 2007. Measures of future pumping reductions are inherently
cross-sectional but repeated for each year of the panel.
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water extraction (in many GSAs, the extent of overdraft alone exceeds total municipal use)
and the value of water tends to be much higher in residential and industrial uses. We also
assume that pumping reductions will be divided evenly across all agricultural land in the
GSA. In the absence of more specific regulatory plans, this is a reasonable assumption
because of strong pre-existing allocation norms; surface water districts in California al-
most always allocate reductions in irrigation water equally across cropland area (Hagerty,
2021). We also censor negative values at zero. Negative values mean that a GSA has
room to extract more groundwater each year without suffering overdraft. Because our
focus is on future reductions in extraction, we only care about the extent of overdraft, not
the extent of resource under-utilization.

Our final treatment variable averages across the per-acre versions of these three prox-
ies and is shown in Figure 2. In some cases, multiple contiguous GSAs joined together to
collaboratively develop one GSP; we combine and treat them as one unit in our analysis.
We also exclude GSAs that exclusively or primarily cover cities. The subset of groundwa-
ter basins that reside in the Central Valley form the basis of our full-sample analysis and
consist of both critically and non-critically overdrafted basins. The estimated reduction in
groundwater extraction under SGMA ranges from 0 to 1.1 acre-feet per acre (AF/acre)13

and averages 0.12 AF/acre. For context, California crops like fruits, vegetables, and nuts
can use 1.5 to 4 AF of water per year depending on the crop.

4.2 Land Use

Our land use data consist of annual information on crops grown in the state at a 30-meter
grid resolution spanning 2007-2021. We use the USDA’s Cropland Data Layer, which
is a remotely sensed data product of 119 distinct land-use classifications. We aggregate
pixels to fields (quarter-quarter sections as described above). We classify land use into
six categories: annual crops, perennial crops, fallowed/idled land, grassland, nature, and
developed space. Figure 3 plots trends in these land use categories over time.

Throughout our sample, we observe a trend of annual acreage declining and peren-
nial acreage increasing. This trend is visible in years prior to the passing of the SGMA
legislation. The drop in annuals appears to have leveled off in the initial years after the
announcement of the policy before continuing a downward trend in recent years. Peren-
nial acreage has steadily increased since 2010, roughly doubling over a 10 year period
with no visible changes in the trajectory in the years after SGMA. In fact, perennial crops
have increased nearly 50% since SGMA passed in 2014.

13An acre-foot is the volume of water that would cover one acre of land to a depth of one foot.
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Figure 2: Spatial Variation in Regulatory Stringency

Note: The map shows average expected reduction in groundwater
pumping required under SGMA in acre-feet per acre (AF/acre) for
basins in the Central Valley. This average reduction is estimated by
averaging across the three treatment variables: reported overdraft, pro-
jected reduction, and modeled overdraft.
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Figure 3: Land Use, 2007-2021
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Note: Data come from USDA’s Cropland Data Layer. The horizontal line marks the
passage of SGMA.
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For our outcome variable of new perennial plantings, we take the first difference of
a binary indicator for whether each field is planted with perennials in a given year. This
first difference may amplify noise from classification error, so we attempt to reduce error
by applying a data correction procedure that leverages the panel structure of the data.14

Overall, about 1% of fields are newly planted with perennials in each year of our sample.

4.3 Agricultural Well Construction

A secondary outcome variable is new agricultural well construction, which is another
long-term investment decision that may be affected by expected future water supply. We
use the Well Completion Reports from the Department of Water Resources, which repre-
sent the universe of agricultural wells drilled in California. The data run through 2022 and
extend back many decades, but we use data beginning in 1993 for congruence with our
other variables. The dataset includes information on each well’s location, drilled depth,
and intended use.

Because the data source reports only where wells were constructed, not where they
were not, we form a consistent sample frame by joining well observations to the farm
fields we defined above for land use observations. Many (but not all) well locations are
anonymized by rounding to the nearest node in a one-square-mile grid. This means that
some of our fields have an implausible number of wells while most others have none, but
this is not a problem because all analysis smooths over fields within each basin. The most
concerning type of measurement error would be misclassification of a well into the wrong
subbasin. We eliminate this error in the paired sample by excluding fields that may be
misclassified: those within 1 mile ×

√
2

2 = 1.14 km of the boundary.
Our final variable is the number of new wells per year per square mile, which we

construct by dividing the number of new wells in a field by the square mileage of the
field. In all analysis, we weight by land area of field observations, to ensure estimates
are geographically representative and do not depend on the method of aggregation. The
mean number of new wells per year in our full sample is 0.03 per square mile. Taking
a cumulative sum of all new wells through the observed year for each field, the mean
number of total wells is 0.95 per square mile.

14Perennial crops by definition must exist for more than one year, so for each field, we examine sliding
five-year windows. If the land use code is identical in years 1, 2, 4, and 5, but different in year 3 – and
either the year-3 value is a perennial crop and the surrounding years are not, or vice versa – we correct the
year-3 value to be the same as the surrounding years.
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4.4 Water Use

To proxy for groundwater extraction, we create an index of crop water use intensity, which
estimates the volume of irrigation water used at each field. To form this index, we com-
bine the land use data above with estimates of crop-specific water use by fine geographic
regions and year, provided by DWR and described further in Hagerty (2021). We join
each field to the region that contains it and impute the water use estimate for the crop
observed at that field.

Our goal is to measure groundwater use, but total water use includes both surface
water and groundwater. This is not a problem for our difference-in-differences analysis
so long as any post-SGMA changes in surface water quantities are uncorrelated with
expected future reductions in groundwater extraction under SGMA. In case this is not true,
we also collect data on surface water supplies from Hagerty (2021). This dataset includes
annual volumes of surface water deliveries from the Central Valley Project (CVP), State
Water Project (SWP), and Lower Colorado operations, and estimated diversions on the
basis of surface water rights, spanning 1993-2022. On average, surface water use amounts
to 1.3 AF/acre, or 62% of total applied water.

5 Empirical Approach

5.1 Research Design: Paired Difference-in-Difference

To measure the effects of future reductions in groundwater extraction, we leverage the
fact that SGMA has created substantial variation in future regulatory stringency across
geography in California. Our basic approach is to compare outcomes across different
GSAs that are subject to greater or lesser future pumping reductions. However, a simple
analysis that pools together all GSAs into a single comparison raises immediate problems.
Regions facing greater reductions under SGMA are very different from regions facing
fewer (or no) reductions. Figure 1 illustrates this well: basins deemed to be in “critical
overdraft” largely reside in the southern half of the Central Valley, where weather and
growing conditions are quite different from regions in the northern half.

A difference-in-difference analysis would help by subtracting out baseline trends, but
even this relies on a parallel trends assumption that is difficult to justify from institutional
knowledge. Farms in the southern Central Valley have been planting perennials and de-
pleting groundwater at a faster rate than those further north, so the post-SGMA trajectory
of northern GSAs is unlikely to be a plausible counterfactual for that of southern GSAs.
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We illustrate the challenges of a full-sample analysis in Figure 4, which plots our three
outcome variables over time by critical overdraft status, a coarse binary classification that
correlates with future pumping reductions. Not only are critically overdrafted basins quite
different from others – for example, they grow considerably more water-intensive crops –
they also fail to exhibit non-parallel trends in the pre-treatment period (prior to 2014).

Instead, we use a paired difference-in-difference approach. Rather than comparing
each GSA to all other GSAs in the state, we identify the impacts of impending ground-
water regulation by comparing each GSA to other neighboring GSAs, before and after
the restrictions became known. Neighboring GSAs often still have variation in expected
future groundwater restrictions, yet they are more similar to each other in other ways. A
paired approach relaxes the parallel trends assumption – it is more plausible to think that
neighboring GSAs would have similar responses to common shocks absent SGMA, than
to think the same of all GSAs in the state.

An alternative research design in this setting might be a geographic regression discon-
tinuity (RD) at the boundaries between neighboring GSAs. The main reason we prefer a
difference-in-difference approach is that many boundaries of GSAs coincide with bound-
aries of water districts, which supply surface water and have been shown to introduce
discontinuous effects on land use and agricultural production (Hagerty, 2021). If we es-
timated a geographic RD in the post-SGMA period, it would likely include bias from
these other borders. Instead, the difference-in-difference design accounts for this bias,
by allowing us to ask how much the spatial difference across GSA boundaries changed
post-SGMA relative to the pre-SGMA period.

Still, our analysis includes some elements of an RD design to deal with another impor-
tant concern: Future restrictions on groundwater extraction are determined not randomly
but by amount of overdraft. Regions with greater overdraft tend to have lower groundwa-
ter levels, so they are likely to respond to economic shocks differently than would regions
with less overdraft. However, GSA boundaries represent only administrative boundaries,
not hydrological boundaries, so underground groundwater levels equalize across GSA
boundaries. Two neighboring GSAs on average might have very different groundwater
levels (and therefore face different future restrictions), but close to the boundary between
them, groundwater levels (and therefore the cost of extraction) will be nearly identical.15

15This will not be true if the GSA boundaries are drawn to coincide with physical barriers that restrict
underground flow. This is why, as mentioned in Section 2, we do not use GSA comparisons across bound-
aries of basins, which are defined by hydrogeological features. We use only comparisons across boundaries
of subbasins, which are defined for administrative convenience and have no hydrogeological meaning. The
exception is that in the Central Valley we combine the Sacramento Valley and San Joaquin Valley basins,
which are connected underground but defined separately because of their surface hydrology.
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Figure 4: Investment and Extraction Outcomes in Full Sample
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Note: Graphs plot the three outcome variables by critical overdraft designation using
the full sample – all agricultural land in GSAs affected by SGMA. Years shaded in gray
denote the time between passage of SGMA and release of GSPs; the “pre-treatment”
period is before the gray period and the “post-treatment” period is after it.
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As a result, areas immediately around a GSA boundary have different values of the treat-
ment variable (future restrictions change discretely at the boundary and are likely to apply
equally throughout each GSA) but share more similar environmental conditions than areas
further away from the boundary. So in the spirit of an RD design, our main specification
controls for distance to the boundary and applies triangular kernel weights that put greater
weight on areas closer to the boundary, although results turn out to be insensitive to these
choices.

To form the paired sample for our main analysis, we find all pairs of contiguous
groundwater subbasins in California, restrict the full sample to observations that fall
within 15 km of the boundary between each pair of neighboring subbasins, and then stack
observations from all such pairs into one dataset. The paired sample is therefore both
restricted and repeated; many observations appear multiple times as part of distinct pair
comparisons. The radius of 15 km is chosen to be large enough to include a substantial
mass of observations on both sides of the boundary while small enough to ensure they are
similar; we show that results are insensitive to this specific choice.

5.2 Timing of Treatment

To select time periods for the before-after comparison, we want to isolate periods that are
completely unaffected by SGMA, and those during which the future pumping restrictions
are clear. The pre-treatment period is reasonably straightforward, since SGMA passed
in September 2014. For the outcome variables of new perennial plantings and water
use intensity, we consider 2014 to be the last pre-treatment year. These two variables
are derived from observations of land use, which would not have responded late in the
calendar year, since planting decisions are made in early spring. For well construction,
we consider 2013 to be the last pre-treatment year, since wells are drilled at discrete times,
so decisions during 2014 could have been affected by the legislative process in that year.

We define the post-treatment period as only starting in 2020. We exclude the inter-
vening years of 2015-19 from both pre- and post-treatment periods and consider them
to be a “coordination” or “middle” period. The reason is that the post-treatment period
should consist of a time during which we can be confident that farmers have changed their
beliefs about the future availability of water under SGMA. The years immediately after
SGMA do not fit this description: The deadline for GSAs to form was June 30, 2017, so
before then, farmers did not even know what GSA they would be in. It was not until 2018
that sustainability plans were drafted and public hearings held. However, after this point,
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GSAs undertook significant community outreach and engagement.16 By the time each
GSA published a Notice of Planned Adoption of their sustainability plans – late 2019 for
almost all GSAs in our dataset – it is likely that landowners successfully updated their
beliefs about changes to future pumping.

Because the timing of our treatment variable is simultaneous across all units, we avoid
many of the problems identified in the recent literature on difference-in-differences (Baker
et al., 2021).

5.3 Regression Model

To build intuition for our main regression specification, consider a simple scenario in
which two GSAs g in neighboring subbasins differ in expected future pumping reductions.
The treatment variable Tg takes a value of 1 for the GSA facing greater cutbacks and 0
for the other. The timing variables Midt and Postt equal 1 in the coordination period
(after SGMA was announced in 2014 but before GSPs were finalized in 2019) and the
post-treatment period (after farmers have had a chance to update their beliefs about future
pumping restrictions), respectively. If we regress an outcome Yigt for field i on these
variables and their interactions:

Yigt = γTg +λ1Midt +σ1(Tg×Midt)+λ2Postt +σ2(Tg×Postt)+ εigt (8)

the coefficient on Tg×Postt captures the additional effect of being in the GSA with greater
future pumping restrictions (relative to its neighbor) in the post-treatment period (relative
to the pre-treatment period, excluding the coordination period).

Our main specification stacks together all 73 pairs of neighboring subbasins by using
the paired sample. It pools the coefficient of interest β across pairs p:

Yigpst = γTgp +δ (Tgp×Midt)+β (Tgp×Postt)+αpst +ω
′Xigpst + εigpst . (9)

As described above, the baseline sample is restricted to observations within 15 km of
the boundary of each subbasin pair. The variable αpst represents year × subbasin pair
× boundary-segment fixed effects. These fixed effects control for time-invariant subbasin
pair characteristics as well as annual shocks shared by GSAs on both sides of the subbasin
boundary. We split each boundary pair into 5-km pieces we call boundary segments s to

16Community outreach and engagement were codified into the law under SGMA. In fact, GSAs were
required to record their public outreach efforts. Stakeholder engagement included the dissemination of
resources regarding SGMA implementation and several public comment hearings at the local level.
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ensure the regression is comparing observations that are near each other in both perpen-
dicular and parallel dimensions. The fixed effects thus ensure our coefficient of interest is
identified by comparing fields only directly across a subbasin boundary from each other.

We control for surface water supplies in case the treatment variable happens to be
correlated with any post-SGMA shocks to surface water quantities. Our covariates Xigpst

include surface water supplies in both the same year and the previous year, to capture
the recent past of any decisions that affect the outcome variables, since investment and
extraction decisions are made throughout the year.17 We also include interactions of these
surface water variables with a full set of year indicators, to flexibly allow the effects of
surface water across GSAs to vary separately for each year in the data.

In the spirit of an RD design, we also control for perpendicular distance to the subbasin
boundary, and interact this distance with Tgp to estimate separate terms on each side of
the boundary. Observations are weighted both by field acres (to obtain estimates that
are representative of land area) and by a triangular kernel in distance to the boundary
(following Cattaneo et al. (2019)). Standard errors are clustered by the unit of treatment
– GSA, or sets of GSAs that submit a joint GSP – to account for both serial and spatial
correlation.

To show effects over time, we also deploy an event study framework that estimates
separate effects for each year of our data:

Yigpst = γTgp + ∑
t 6=2014

θtTgp +αpst +ω
′Xigpst + εigpt . (10)

relative to an excluded year of 2014 (for new perennial plantings and water use intensity)
or 2013 (for well construction).

In our baseline specification for both event studies and the pooled regression, we use a
simple binary indicator for the treatment variable Tgp. It measures the effect of being in a
subbasin that faces greater future pumping restrictions than its neighbor, on average across
all pairs of neighboring subbasins. This effect tells us about the direction of response,
but to interpret it quantitatively, we also need to know the average difference in future
pumping reductions between subbasin pairs in the paired sample: 0.12 AF/acre. We also
estimate an alternative specification that uses the raw estimated value of future pumping
reductions as a continuous treatment variable.

Identification in our setting requires that in the absence of the sustainability mandate,
differences in outcomes between the treated and counterfactual comparison groups would

17Bruno et al. (2023a) show that well construction does not respond to surface water supplies more than
one year later.
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have remained constant over time. We lean on the panel of pre-treatment data to test for
differences in outcomes between treated and control units in years prior to SGMA. The
failure to identify a difference in the pre-treatment years provides evidence to support the
assumption that in the absence of the policy, treatment and comparison groups would have
trended similarly.

Despite empirical evidence for the absence of pre-trends, it could still be the case that
GSAs subject to greater pumping restrictions would have trended differently after 2014.
The post-treatment years in our sample mark a tumultuous time for California farmers,
many of whom produce goods for international buyers and suffered losses from retaliatory
tariffs, port congestion, and continuing supply chain issues. While many of these shocks
may have differential effects on growers of different crop types, they are unlikely to be
correlated with GSA-level variation in overdraft within neighboring subbasin pairs.

6 Results

We present results for three outcome variables: new perennial plantings and new well con-
struction as measures of investment, and crop water intensity as a proxy for groundwater
extraction.

6.1 New Perennial Planting

To measure whether future regulation leads farmers to increase or decrease their rate
of investment in water-intensive capital, we first consider the rate of new plantings of
perennial crops, such as fruit and nut orchards and vineyards.

To start, we assess trends in new perennials in the pre-treatment period. Figure 5
shows that in the paired sample – unlike in the full sample – new perennial plantings
tracked each other very closely prior to 2014. Not only do they appear to move in par-
allel, they also closely match in levels. Since the “fewer” and “more” groups behave so
similarly prior to SGMA, it increases confidence that they would have also behaved sim-
ilarly afterward without SGMA – and that the parallel trends assumption is much more
plausible in the paired sample than the full sample (Figure 4).

Next, we examine how new perennial plantings changed in the post-treatment period,
after SGMA passed and future pumping reductions became clearer. The answer appears
obvious from the time series plot in Figure 5: there was no change. GSAs facing fewer
vs. more future pumping reductions continued to plant perennials at the same rate as each
other in the post-treatment period just as much as in the pre-treatment period. One concern

27



Figure 5: New Perennial Plantings by Treatment Status, Paired Sample

Note: Figure plots the annual change in the share of fields planted in perennial crops in the paired
sample, which stacks all neighboring subbasins and includes only observations within 15 km of
their boundary. “More” and “Fewer” are within these pairs, relative to neighbors in the same year.
Gray shading indicates the “coordination” period between when SGMA was passed and when
local sustainability plans were published. Means weighted by area.

Figure 6: Effect of Greater Future Reductions on New Perennial Plantings

Note: Figure plots year-specific coefficients from the estimation of Equation 10. Each coefficient
represents the difference in new perennial plantings between GSAs facing more or fewer future
pumping restrictions (within each pair of neighboring subbasins) in that year, minus the same
difference in 2014, the last year of planting decisions before SGMA became law. Estimates also
adjust for surface water supplies and distance to the boundary and are weighted by area and a
triangular kernel in distance to boundary. Sample is limited to fields within 15 km of the boundary.
Vertical bars denote 95% confidence intervals. Standard errors clustered by GSA.
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might be whether the “more” and “fewer” groups really do have meaningful differences
in the treatment variable. But despite the similarity in the outcome variable, the average
difference in future pumping reductions is 0.12 AF/acre – roughly the same as the average
value of future reductions across the paired sample as a whole.

To confirm this apparent result, we proceed to showing results from a formal event
study: the effects over time estimated from equation 10. Figure 6 plots the year-specific
average effect of being in the GSA with “more reductions” between each neighboring
pair, relative to 2014, the last pre-treatment year. This figure plots the same data as Figure
5, but it shows differences between the two groups in each year net of their 2014 dif-
ference, controls for surface water supplies and distance to subbasin boundary, and adds
confidence intervals. Since farmland near the boundary is very similar other than the
change in expected future pumping restrictions, we can interpret any differences in new
perennial plantings relative to 2014 as the effect of being in a GSA with greater future
regulation.

In each of the five years preceding the passage of SGMA, we fail to reject that the
difference in average new perennial plantings across all subbasin pairs is statistically dif-
ferent from that in 2014, again lending confidence to the identifying assumption. How-
ever, the effects of greater future pumping reductions in each of the two years in the
post-treatment period similarly show no statistical difference in new perennial plantings
relative to 2014. These results suggest that farmers are not making anticipatory adjust-
ments in new perennial plantings as a result of SGMA in these early years.

6.2 New Well Construction

We next turn to a second measure of water-intensive capital investments: new construction
of irrigation wells. In Figure 7, we report trends in new wells constructed per square mile
over time by treatment status in the paired sample, focusing only on farms within 15km
of the boundary between agencies. For this outcome variable, we can lean on a longer
panel of pre-treatment data to investigate the parallel trends assumption. We again see
that subbasins that face more and fewer future pumping reductions under SGMA closely
tracked each other in the pre-treatment period – as well as in the post-treatment period.

Turning to the event study, Figure 8 plots coefficient estimates from the estimation of
equation 10 with new well construction as the outcome variable. With few exceptions, we
cannot reject that the differences in new well construction between subbasin pairs are sig-
nificantly different from that in 2013. The estimated effects in the coordination years of
2014-2019 and the post-treatment years of 2020-2022 similarly show no statistical differ-
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Figure 7: New Well Construction by Treatment Status, Paired Sample

Note: Figure plots the mean annual count of new wells constructed per unit area in the paired
sample, which stacks all neighboring subbasins and includes only observations within 15 km of
their boundary. “More” and “Fewer” are within these pairs, relative to neighbors in the same year.
Gray shading indicates the “coordination” period between when SGMA was passed and when
local sustainability plans were published. Means weighted by area.

Figure 8: Effect of Greater Future Reductions on New Well Construction

Note: Figure plots year-specific coefficients from the estimation of Equation 10. Each coefficient
represents the difference in new well construction between GSAs facing more or fewer future
pumping restrictions (within each pair of neighboring subbasins) in that year, minus the same
difference in 2013, the last full year before SGMA became law. Estimates also adjust for surface
water supplies and distance to the boundary and are weighted by area and a triangular kernel in
distance to boundary. Sample is limited to fields within 15 km of the boundary. Vertical bars
denote 95% confidence intervals. Standard errors clustered by GSA.
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ence in new well construction relative to 2014, suggesting that farmers are not responding
to greater future pumping restrictions by investing in new irrigation wells.

6.3 Water Use Intensity

Finally, to measure whether future regulation leads farmers to increase or decrease their
rate of groundwater extraction before the regulation binds, we turn to our index of crop
water use intensity. We again first plot changes in water use intensity between basins
facings greater and fewer future pumping reductions in Figure 9 and then show coeffi-
cient estimates from the estimation of equation 10, expressed relative to 2014, in Figure
10. Figure 9 suggests that basins trended similarly prior to the announcement of SGMA,
with regions that were facing more pumping restrictions on average having higher water
requirements. Figure 10 shows formally that there were no statistically significant differ-
ences in crop water use intensity before or after the announcement of the regulation. We
fail to find evidence that farmers are altering water use in anticipation of future ground-
water restrictions.

6.4 Pooled Regressions

To quantify our results, we report estimates of equation 9 in Table 2. These regressions
pool together years in the pre- and post-treatment years, providing an overall average
difference-in-difference estimate. They potentially improve statistical power over any
single year’s estimate in the event study.

Looking at the coefficient of interest in the top row, estimates for all variables are
small, with standard errors that cannot reject a zero effect. For new perennial plantings,
the point estimate is 0.3 percentage points per year, which is relatively small compared
with the sample mean value of new perennial plantings (1.1 percentage points per year).
Recall that the average difference in future reductions between neighbors represented by
the “More Reductions” treatment variable is about the same as the sample average value
of future reductions, so we can interpret its effect as the effect of SGMA overall without
further scaling.

Estimates for other two outcome variables are considerably more precise. For new
well construction, we can reject an anticipatory response in either direction of 0.006 per
square mile per year. This value is small compared with the sample mean of 0.043 per
square mile per year. For water use intensity, we can reject an anticipatory increase of
0.06 AF/acre or an anticipatory decrease of 0.02 AF/acre per year, again small compared
with the sample mean value of 2.9 AF/acre.
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Figure 9: Water Use Intensity by Treatment Status, Paired Sample

Note: Figure plots mean water-use intensity in the paired sample, which stacks all neighboring
subbasins and includes only observations within 15 km of their boundary. “More” and “Fewer”
are within these pairs, relative to neighbors in the same year. Water-use intensity is estimated by
combining remote sensing land use data with scientific estimates of crop-specific water use. Gray
shading indicates the “coordination” period between when SGMA was passed and when local
sustainability plans were published. Means weighted by area.

Figure 10: Effect of Greater Future Reductions on Water Use Intensity

Note: Figure plots year-specific coefficients from the estimation of Equation 10. Each coefficient
represents the difference in water-use intensity between GSAs facing more or fewer future pump-
ing restrictions (within each pair of neighboring subbasins) in that year, minus the same difference
in 2014, the last year of planting decisions before SGMA became law. Estimates also adjust for
surface water supplies and distance to the boundary and are weighted by area and a triangular
kernel in distance to boundary. Sample is limited to fields within 15 km of the boundary. Vertical
bars denote 95% confidence intervals. Standard errors clustered by GSA.32



Table 2: Paired Difference-in-Difference Regression Estimates

New Perennial
Plantings
(share)

New Well
Construction
(per sq. mile)

Water Use
Intensity
(AF/acre)

(1) (2) (3)

More Reductions × Post 0.003 0.000 0.020
(0.002) (0.003) (0.027)

More Reductions ×Middle 0.003 0.000 0.016
(0.002) (0.003) (0.018)

More Reductions 0.000 0.005 0.134
(0.001) (0.003) (0.078)

Distance to boundary X X X
Distance to boundary ×More Reductions X X X

Year-Subbasin Pair-Boundary Segment FE X X X
Year FE × Surface water supplies X X X
Year FE × Lagged surface water X X X

Observations 6,242,234 13,924,988 7,202,578
Clusters 104 104 104

Notes: Table reports regression estimates of Equation 9 in the paired sample, which includes all observa-
tions within 15 km of the boundary between pairs of neighboring subbasins, with all such pairs stacked
into one dataset. Observations are fields or units of land, most commonly quarter quarter sections, about 40
acres, from the Public Land Survey System, per year. “More Reductions” is a binary indicator for whether
the field lies in the subbasin with greater expected future pumping reductions under SGMA than its neigh-
bor, within each pair. “Post” is a binary indicator for the post-treatment period after future reductions under
SGMA became clearer (2020-22); “Middle” is a binary indicator for the coordination period (2014-19 for
wells and 2015-19 for the other variables) after SGMA passed. Water use intensity is an index constructed
from remotely sensed land use data and scientific estimates of crop-specific water use. Well construction is
drawn from required state reports. Perennial crops are observed from remotely sensed land use data. Data
begin in 1993 for wells and 2007 for the other outcome variables. Observations are weighted by area and a
triangular kernel in distance to boundary. Standard errors (in parentheses) are clustered by GSA.
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6.5 Robustness

Before concluding that future groundwater restrictions under SGMA are not altering be-
havior around extraction or investment, we want to ensure that our null results are not
driven by some of the specific choices we made in our data processing and regression
analysis. We explore the sensitivity of our results to different controls, ways of measur-
ing treatment status, and to alternative sample definitions. Figure 11 plots estimates of the
overall difference-in-difference coefficient from equation 9, for each of our three outcome
variables, for a range of modifications to the baseline specification.

The first row presents our base (preferred) specification, which corresponds to the
estimates in Table 2. Recall that our baseline treatment variable is a binary indicator for
whether or not a field is within a GSA facing greater future restrictions than its neighbor.
In the second row, we instead use the continuous measure of expected future pumping
restrictions, in units of AF/acre, as described in Section 4.1. Coefficient estimates here
are in different units; they give the change in outcomes due to a one AF/acre increase
in overdraft in the years following the announcement of the policy. Quantitatively, they
cannot be directly compared to the base specification, so the fact that the confidence
intervals are wider does not mean that the estimates are less precise. Directionally, they
tell a similar story: we do not see evidence that future pumping reductions affect present
decisions.

Next, we narrow our analysis to a comparison that is a priori more likely to respond
more strongly to groundwater restrictions: areas outside of surface water districts. These
regions are solely dependent on groundwater, so a given reduction in pumping constitutes
a greater share of their total water use. They also may be asked to shoulder a greater
share of the pumping reductions within a given GSA, since they may be responsible for a
greater share of groundwater extraction in the past and present. Still, in row 3, we restrict
our sample to only areas outside of water districts, but find similar results across all three
outcome variables.

We next vary the bandwidth used to construct the paired sample, which restricted our
sample to observations within 15 km of the boundary between neighboring subbasins.
Larger bandwidths allow us to include more data and improve precision, but smaller
bandwidths can reduce concerns about omitted variables. In the next four rows, we report
estimates from constructing the paired sample using four alternative bandwidths: 5, 10,
25, and 50 km.18 Marginally significant positive results are seen in new perennial plant-

18Although optimal bandwidths can be calculated in a basic RD setting, it is not straightforward to do so
while incorporating a pre/post difference, spatial correlation, a multidimensional cutoff, and pooling across
subbasin comparisons.
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Figure 11: Robustness of Treatment Effects

Note: Figure reports difference-in-difference estimates from equation 9, pooled across
years in the post-treatment and pre-treatment periods. Each row presents results from a
different regression specification for all three outcome variables. Horizontal bars denote
95% confidence intervals.
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ings for larger bandwidths, but they are negative for smaller bandwidths. Overall, we find
that varying the bandwidth used to construct the sample does not change the conclusions
of null results across outcome variables.

We next check to see if our results are sensitive to the choice of treatment variable.
Recall that our preferred treatment variable was derived from an average across three
proxy variables: modeled overdraft, reported overdraft, and projected overdraft. Rows 8-
10 show results with alternative treatment variables that instead use each of these proxies
individually. While the pooled treatment effect on new well construction appears to vary
by the choice of proxy, results for other outcomes variables are stable to this choice.
The story is similar with one additional variation on our binary treatment variable, which
considers basins that are deemed by the state to be in conditions of critical overdraft.
While two estimates here are statistically significant, further investigation (not shown
here) reveals that they in turn fail to survive minor specification changes and do not show
patterns of heterogeneity that align with theory. We also note that after conducting many
null hypothesis tests, we should expect a few to be statistically significant; otherwise our
confidence intervals would be too wide.

A final set of robustness checks relates to our choice of control variables and the
inclusion or exclusion of various fixed effects. We test the sensitivity of our baseline
results to the exclusion of (a) border distance control and kernel weights, (b) surface water
controls, and (c) border segment fixed effects, and (d) to the inclusion of field fixed effects.
Across alternative specifications, results are consistent: statistically and economically
insignificant effects in the post-SGMA period, estimated with similar magnitudes and
precision to results in the main table.

7 Discussion

The precisely estimated zero effects of future pumping restrictions on new perennial plant-
ings, new well construction, and crop water intensity suggest that the policy is not yet
altering extraction or investment in water-intensive production technologies. Across the
board, we find that null effects are robust across specifications for all outcome variables,
with no detectable heterogeneity. No consistent pattern emerges across this large swath
of alternative specifications.

To interpret these empirical results, we turn back to the theoretical model. Our theoret-
ical model showed how both investment and net extraction (the effect of future regulation
on current extraction through all channels) changed with beliefs about future water supply.
Under certain conditions, countervailing Green Paradox and early-decline effects might
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cancel out, leaving zero effects on net. But in fact, we can rule out this possibility, because
we are able to look at effects on both extraction and investment. The conditions for zero
effects are different for different outcomes (bN = ps for investment and bN = psξ for
extraction), and they cannot be true simultaneously. This leaves us with the remaining ex-
planation: that a high value of farmers’ private discount rate deflates away considerations
that are at least 10 to 20 years down the road, leaving the effects small.

Another potential explanation for null effects could be that farmers’ true beliefs about
future regulation are smaller than what our measures are capturing. This would manifest
in our model as an attenuation bias from underestimating the change in ȳ. This could
be due to either lack of salience – perhaps landowners lack information – or they may
have low confidence in the enforcement of the regulation. If farmers perceive the future
restrictions to be small or unenforceable, then any effects on current extraction may be too
small to detect. There is no one clear way of knowing what the future regulation will be.
But given that the state operates as a backstop for non-compliant GSAs, public outreach
was codified into the law, and SGMA has dominated local news headlines about water
since its passing, we consider this a less likely explanation.

8 Conclusion

This paper studies whether producers respond to future groundwater regulation by chang-
ing groundwater extraction or investing in long-term agricultural capital like planting
perennial crops and constructing new irrigation wells. Our theoretical model shows for-
mally that a Green Paradox can occur for groundwater, but that it is unlikely in conditions
of open access. Allowing for investment opportunities like adopting water-intensive pro-
duction technology – a main mechanism for farmers to increase groundwater use – com-
plicates the story and allows for the possibility of an anticipatory decline in extraction.
Our model generates testable scenarios that we take to data on California’s agricultural
groundwater.

Empirically, we evaluate the early effects of California’s Sustainable Groundwater
Management Act of 2014, a sweeping groundwater regulation that is affecting over 95%
of the agricultural groundwater pumping in the state. The regulation is particularly re-
markable given the fact that groundwater use was largely open access prior to its passing.
The policy required groundwater agencies to establish sustainable pumping criteria and
develop plans for how to achieve that over the next two decades. The decentralized nature
of the mandate led to large variation in expected future pumping restrictions across the
state, creating a policy experiment to study questions about anticipatory behavior.
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Our analysis uses spatial land use data for all agricultural parcels subject to the leg-
islation and estimates how groundwater extraction and farmland investments responded
to changes in future pumping access. Although investments in perennial crops have in-
creased by nearly 50% since SGMA passed at the end of 2014, we find that this boom
occurred despite, not because of, the policy. Likewise, when comparing within pairs of
neighboring subbasins that face greater and lesser future pumping restrictions, we find
no evidence of changes in water use intensity or new well construction in basins facing
greater future pumping restrictions. Our theoretical model suggests that the most likely
explanation for our findings – that SGMA is not yet altering extraction or investment – is a
high private discount rate that diminishes the importance of future regulation and shrinks
both types of anticipatory motives.
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A Appendix: Proofs

A.1 Proof of Equations 2 and 3

The Lagrangian of this problem is:

L =
∞

∑
t=0

(1+ r)−t[B(yit)− c(xit)yit
]
+

∞

∑
t=0

µit

[
xit +g− 1

N

N

∑
j=0

y jt− xi,t+1

]
.

Its first-order conditions are:

yit : (1+ r)−t[B′(yit)− c(xit)
]
− 1

N µit = 0 ∀i, t

xit : −(1+ r)−tc′(xit)yit +µit−µi,t−1 = 0 ∀i, t > 0

µit : xit +g− 1
N ∑

N
j=0 y jt− xi,t+1 = 0 ∀i, t.

Rearranging the first condition reveals Equation 2. To obtain Equation 3, we can substitute
the first-order conditions for yit and yi,t−1 into the one for xit and rearrange:

−(1+ r)−tc′(xit)yit = µi,t−1−µit

−(1+ r)−tc′(xit)yit = (1+ r)−(t−1)[B′(yi,t−1)− c(xi,t−1)
]
N− (1+ r)−t[B′(yit)− c(xit)

]
N

− 1
N

c′(xit)yit = (1+ r)
[
B′(yi,t−1)− c(xi,t−1)

]
−B′(yit)+ c(xit)

(1+ r)
[
B′(yi,t−1)− c(xi,t−1)

]
= B′(yit)− c(xit)+

1
N
(−c′(xit))yit

B′(yi,t−1)− c(xi,t−1) = (1+ r)−1[B′(yit)− c(xit)]+(1+ r)−1 1
N
(−c′(xit))yit

B′(yit)− c(xit) = (1+ r)−1[B′(yi,t+1)− c(xi,t+1)
]
+(1+ r)−1 1

N
[−c′(xi,t+1)]yi,t+1.
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A.2 Proof of Proposition 1

Starting with the Lagrangian from before, expanding sums, and substituting the assump-
tions yi1 = ȳ and xit = xi2 and yit = g for all t ≥ 2:

L =
∞

∑
t=0

(1+ r)−t[B(yit)− c(xit)yit
]
+

∞

∑
t=0

µit

[
xit +g− 1

N

N

∑
j=0

y jt− xi,t+1

]
= B(yi0)− c(xi0)yi0 +(1+ r)−1[B(yi1)− c(xi1)yi1

]
+

∞

∑
t=2

(1+ r)−t[B(g)− c(xi2)g
]
+

µi0

[
xi0 +g− 1

N

N

∑
j=0

y j0− xi1

]
+µi1

[
xi1 +g− ȳ− xi2

]
+

∞

∑
t=2

µit

[
xi2− xi2

]
= B(yi0)− c(xi0)yi0 +(1+ r)−1[B(ȳ)− c(xi1)ȳ

]
+(1+ r)−1 1

r

[
B(g)− c(xi2)g

]
+

µi0

[
xi0 +g− 1

N

N

∑
j=0

y j0− xi1

]
+µi1

[
xi1 +g− ȳ− xi2

]
.

The third equality uses the fact that ∑
∞
t=1(1+ r)−t = r−1 and therefore ∑

∞
t=2(1+ r)−t =

r−1(1+ r)−1, through either substitution or a change of variables.
The first-order conditions of this new Lagrangian are:

yi0 : 0 = B′(yi0)− c(xi0)−
1
N

µi0

xi1 : 0 = −(1+ r)−1c′(xi1)ȳ−µi0 +µi1

xi2 : 0 = −(1+ r)−1 1
r

c′(xi2)g−µi1

and the Euler equation is:

µi0 = µi1− (1+ r)−1c′(xi1)ȳ

N
[
B′(yi0)− c(xi0)

]
= −(1+ r)−1 1

r
c′(xi2)g− (1+ r)−1c′(xi1)ȳ

B′(yi0)− c(xi0) = −(1+ r)−1 1
N

[1
r

c′(xi2)g+ c′(xi1)ȳ
]

B′(yi0)− γ + psxi0 = −(1+ r)−1 1
N

[1
r
(−ps)g+(−ps)ȳ

]
B′(yi0)− γ + psxi0 = (1+ r)−1 1

N
ps
[1

r
g+ ȳ

]
.
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Using the Implicit Function Theorem:

G := B′(yi0)− c(xi0)− (1+ r)−1 1
N

ps
[1

r
g+ ȳ

]
= 0

∂G
∂yi0

= B′′(yi0)

∂G
∂ ȳ

= −(1+ r)−1 1
N

ps

dyi0

dȳ
= − ∂G/∂ ȳ

∂G/∂yi0
=

ps
(1+ r)NB′′(yi0)

.

B(y) is concave, so B′′(y) is negative, and {p,s,r,N} are all positive, so this derivative is
always negative.

A.3 Proof of Lemma 1

Starting with the Euler equation above and taking other users’ investment decisions as
given, we substitute in the benefit function parameterization for each investment choice:

a−by0
i0− γ + psxi0 =

1
N
(1+ r)−1 ps

[1
r

g+ ȳ
]

a+β −byI
i0− γ + psxi0 =

1
N
(1+ r)−1 ps

[1
r

g+ ȳ
]

Substituting these equations to find yI
i0− y0

i0:

−by0
i0 = β −byI

i0

byI
i0−by0

i0 = β

yI
i0− y0

i0 = β/b.

This expression is always positive, since both β and b are positive.

A.4 Proof of Proposition 2

The probability of investment is Ii = Pr(Ki ≤ Θi) = FK(Θi), and the probability density
function is defined as fK(Θi) := dFK(Θi)/dΘi. Applying the Chain Rule:

dIi

dȳ
=

dFK(Θi)

dȳ
=

dFK(Θi)

dΘi

dΘi

dȳ
= fK(Θi)

dΘi

dȳ
.

The remaining task is to find dΘi/dȳ.
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The return on investment Θi is defined as:

Θi :=
∞

∑
t=0

(1+ r)−t
[
BI(yI

it)− c(xI
it)y

I
it

]
−

∞

∑
t=0

(1+ r)−t
[
B0(y0

it)− c(x0
it)y

0
it

]
.

Substituting in the cost function parameterization and rearranging:

Θi =
∞

∑
t=0

(1+ r)−t
[
BI(yI

it)−B0(y0
it)− c(xI

it)y
I
it + c(x0

it)y
0
it

]
=

∞

∑
t=0

(1+ r)−t
[
BI(yI

it)−B0(y0
it)− (γ− psxI

it)y
I
it +(γ− psx0

it)y
0
it

]
=

∞

∑
t=0

(1+ r)−t
[(

BI(yI
it)−B0(y0

it)
)
− (yI

it− y0
it)γ +(xI

ity
I
it− x0

ity
0
it)ps

]
.

Expanding the sum to 3 periods:

Θi =
[(

BI(yI
i0)−B0(y0

i0)
)
− (yI

i0− y0
i0)γ +(xI

i0yI
i0− x0

i0y0
i0)ps

]
+

(1+ r)−1
[(

BI(yI
i1)−B0(y0

i1)
)
− (yI

i1− y0
i1)γ +(xI

i1yI
i1− x0

i1y0
i1)ps

]
+

∞

∑
t=2

(1+ r)−t
[(

BI(yI
i2)−B0(y0

i2)
)
− (yI

i2− y0
i2)γ +(xI

i2yI
i2− x0

i2y0
i2)ps

]
.

Substituting in yi1 = ȳ and yit = g for t ≥ 2:

Θi =
[(

BI(yI
i0)−B0(y0

i0)
)
− (yI

i0− y0
i0)γ +(yI

i0− y0
i0)xi0 ps

]
+

(1+ r)−1
[(

BI(yI
i1)−B0(y0

i1)
)
− (ȳ− ȳ)γ +(xI

i1ȳ− x0
i1ȳ)ps

]
+

∞

∑
t=2

(1+ r)−t
[(

BI(yI
i2)−B0(y0

i2)
)
− (g−g)γ +(xI

i2g− x0
i2g)ps

]
=

[(
BI(yI

i0)−B0(y0
i0)
)
− (yI

i0− y0
i0)γ +(yI

i0− y0
i0)xi0 ps

]
+

(1+ r)−1
[(

BI(yI
i1)−B0(y0

i1)
)
+(xI

i1− x0
i1)ȳps

]
+

∞

∑
t=2

(1+ r)−t
[(

BI(yI
i2)−B0(y0

i2)
)
+(xI

i2− x0
i2)gps

]
.

Substituting in the equations of motion, holding constant the extraction choices of other
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users:

Θi =
[(

BI(yI
i0)−B0(y0

i0)
)
− (yI

i0− y0
i0)γ +(yI

i0− y0
i0)xi0 ps

]
+

(1+ r)−1
[(

BI(yI
i1)−B0(y0

i1)
)
− 1

N
(yI

i0− y0
i0)ȳps

]
+

∞

∑
t=2

(1+ r)−t
[(

BI(yI
i2)−B0(y0

i2)
)
− 1

N
(yI

i0− y0
i0)gps

]
=

(
BI(yI

i0)−B0(y0
i0)
)
+(yI

i0− y0
i0)(xi0 ps− γ)+(

BI(ȳ)−B0(ȳ)
)
(1+ r)−1− (yI

i0− y0
i0)ȳ

1
N

ps(1+ r)−1 +(
BI(g)−B0(g)

)
r−1(1+ r)−1− (yI

i0− y0
i0)

1
N

gpsr−1(1+ r)−1.

How does Θ depend on the period-1 quantity limits? Taking the derivative with respect
to ȳ:

dΘi

dȳ
= B′I(y

I
i0)

dyI
i0

dȳ
−B′0(y

0
i0)

dy0
i0

dȳ
+(

dyI
i0

dȳ
−

dy0
i0

dȳ
)(xi0 ps− γ)+

(
B′I(ȳ)−B′0(ȳ)

)
(1+ r)−1− (

dyI
i0

dȳ
−

dy0
i0

dȳ
)ȳ

1
N

ps(1+ r)−1 +

−(yI
i0− y0

i0)
1
N

ps(1+ r)−1− (
dyI

i0
dȳ
−

dy0
i0

dȳ
)

1
N

gpsr−1(1+ r)−1

= B′I(y
I
i0)

dyI
i0

dȳ
−B′0(y

0
i0)

dy0
i0

dȳ
+

(
dyI

i0
dȳ
−

dy0
i0

dȳ
)(xi0 ps− γ− 1

N
ps(1+ r)−1(ȳ+gr−1))+(

B′I(ȳ)−B′0(ȳ)
)
(1+ r)−1− (yI

i0− y0
i0)

1
N

ps(1+ r)−1.
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We know dyi0/dȳ from Proposition 1. Plugging in equation 4:

dΘi

dȳ
= B′I(y

I
i0)

ps
N(1+ r)B′′I (y

I
i0)
−B′0(y

0
i0)

ps
N(1+ r)B′′0(y

0
i0)

+

(
ps

N(1+ r)B′′I (y
I
i0)
− ps

N(1+ r)B′′0(y
0
i0)

)(xi0 ps− γ− 1
N

ps(1+ r)−1(ȳ+gr−1))+

(
B′I(ȳ)−B′0(ȳ)

)
(1+ r)−1− (yI

i0− y0
i0)

1
N

ps(1+ r)−1

=
1
N
(1+ r)−1 ps

[
B′I(y

I
i0)

B′′I (y
I
i0)
−

B′0(y
0
i0)

B′′0(y
0
i0)

]
+

1
N
(1+ r)−2 ps

[
1

B′′I (y
I
i0)
− 1

B′′0(y
0
i0)

]
(xi0 ps− γ− 1

N
ps(1+ r)−1(ȳ+gr−1))+

(
B′I(ȳ)−B′0(ȳ)

)
(1+ r)−1− (yI

i0− y0
i0)

1
N

ps(1+ r)−1.

Substituting in the parameterized benefit functions and equation 5:

dΘi

dȳ
= − 1

N
(1+ r)−1 ps

[
a+β −byI

i0
b

−
a−by0

i0
b

]
+(

a+β −bȳ−a+bȳ
)
(1+ r)−1− (yI

i0− y0
i0)

1
N

ps(1+ r)−1

= − 1
bN

(1+ r)−1 ps
[

β −b(yI
i0− y0

i0)

]
+β (1+ r)−1− (yI

i0− y0
i0)

1
N

ps(1+ r)−1

− 1
bN

(1+ r)−1 ps
[

β −β

]
+β (1+ r)−1− (yI

i0− y0
i0)

1
N

ps(1+ r)−1

= β (1+ r)−1− (yI
i0− y0

i0)
1
N

ps(1+ r)−1

= β (1+ r)−1−β
1

bN
(1+ r)−1 ps

= β (1+ r)−1
[

1− ps
bN

]
.

Finally, we can plug this expression into the equation at the start of this proof:

dIi

dȳ
= fK(Θi)β (1+ r)−1

[
1− ps

bN

]
.
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A.5 Proof of Proposition 3

From Proposition 1, and substituting in the benefit function parameterization for either
investment decision, we have:

∂yi0

∂ ȳ
=

ps
(1+ r)NB′′(yi0)

=−(1+ r)−1 ps
bN

.

And from Proposition 2, we have:

(
yI

i0− y0
i0
)dIi

dȳ
= fK(Θ)

β 2

b
(1+ r)−1

[
1− ps

bN

]
.

Totally differentiating yi0(ȳ, Ii(ȳ)) and substituting in the expressions above:

dyi0

dȳ
=

∂yi0

∂ ȳ
+
(
yI

i0− y0
i0
)dIi

dȳ

= −(1+ r)−1 ps
bN

+ fK(Θ)
β 2

b
(1+ r)−1

[
1− ps

bN

]
= (1+ r)−1

[
fK(Θ)

β 2

b
−
(

1+ fK(Θ)
β 2

b

) ps
bN

]
.

= (1+ r)−1
(

1+ fK(Θ)
β 2

b

)[ fK(Θ)β 2

b

1+ fK(Θ)β 2

b

− ps
bN

]
.

Defining

ξ :=
(

fK(Θ)
β 2

b

)−1
+1

=
1+ fK(Θ)β 2

b

fK(Θ)β 2

b

and substituting it into the expression above:

dyi0

dȳ
= (1+ r)−1

(
1+ fK(Θ)

β 2

b

)[
ξ
−1− ps

bN

]
.

Next, we sign the factors in this expression. All of {r, fK,β ,b} are positive, so (1+
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r)−1
(

1+ fK(Θ)β 2

b

)
is positive, and we can ignore it:

sign
(dyi0

dȳ

)
= sign

(
ξ
−1− ps

bN

)
.

Therefore, dyi0/dȳ > 0 when ξ−1 > ps
bN , or bN > psξ . Similarly, dyi0/dȳ < 0 when

bN < psξ , and dyi0/dȳ = 0 when bN = psξ .
Finally, we can split the range of bN into the three regimes {(−∞, ps),(ps, psξ ),(psξ ,∞)}

because { fK,β ,b, p,s} are all positive, meaning that ξ > 1 and therefore ps < psξ .
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