Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Impact of radiopharmaceutical therapy (177Lu, 225Ac) microdistribution in a cancer-associated fibroblasts model

Abstract

Background

The aim of this study is to elucidate the difference in absorbed dose (Dabs) patterns in radiopharmaceutical therapies between alpha emitters (225Ac) and beta emitters (177Lu) when targeting cancer-associated fibroblasts (CAF) or tumor cells. Five spherical models with 3 mm diameter were created, representing spherical tumor masses that contain tumor clusters, interspersed with CAFs. The mean distance from a tumor cell to the nearest CAF (Lmean) varied throughout these models from 92 to 1030 µm. Dabs calculations were performed while selecting either CAFs or tumor cells as sources, with Convolution/Superposition with 177Lu and Monte Carlo simulations (GATE) with 225Ac. Analyses were conducted with Dose Volume Histograms and efficacy ratios (ER), which represents the ratio of mean Dabs that is deposited in the target volume.

Results

225Ac is the most optimal radionuclide when CAFs are both targeted and irradiating themselves, as ERs increase from 1.5 to 3.7 when Lmean increases from 92 to 1030 µm. With 177Lu, these numbers vary from 1.2 to 2.7. Conversely, when CAFs are sources and tumors are targets with 225Ac, ERs decreased from 0.8 to 0.1 when Lmean increases from 92 to 1030 µm. With 177Lu, these numbers vary from 0.9 to 0.3 CONCLUSION: When targeting CAFs to irradiate tumors, the efficacy of using 225Ac decreases as the average size of the tumor clusters (or Lmean) increases. In such situations, 177Lu will be more effective than 225Ac when targeting CAFs due to the longer beta particle range.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View