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ABSTRACT

The transverse electromagnetic coupling of bunches of particles

with each other is investigated theoretically, and shown to incorporate
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chamber walls) of coherent instability even when the longitudinal
distance between bunches is much larger than the transverse dimensions
of the vacuum tank. The modes of oscillation in which the bunches
move rigidly are investigated; criteria for stability, and expressions
for the small amplitude growth rates under unstable conditions are
presented. The case of a single bunch is considered in detail end
demonstrated to be stable (even in the absence of Landau damping)

provided v Jlies between an integer and the next higher half-integer,

where v 1s the number of transverse free betatron oscillations

*

Resgearch supported by the U. 3, Atomic Energy Cormission.
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bunches which are sensibly
different in intensity (a criterion for this is presented), all modes
are stable provided v satisfies the same restriction. For equally
spaced bunches of equal numbers of particles, approximately half the
modes are unstable without Landau damping. Numerical examples are

presented covering some intermediate situations.
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I. INTRODUCTION

The possible 1instability of coherent transverse oscillations
of an azimuthally uniform beam of particles circulating in a metallic
vacuum chamber has been studied by laslett, Neil, and Sesslerl (INS),

who showed that under certain circumstances the finite resistivity of

the vacuum walls could cause growing oscillations. In most accelerators,

the rf acceleration mechanism generates azimuthal non-uniformity of
particle density, and consequently the work of INS 1is not applicable

to the analysis of transverse instabilities of the beam. In this work
vwe treat a complementary idealization to that of INS--namely, a beam
consisting of a number of bunches which are assumed to have no coherent
motion of the internal degrees of freedom.

We have not, in this paper, studied coherent modes within a
bunch. We expect that in the absence of Tandau damping some of these
modes will be unstable, but we also expect that the synchrotron motion
will introduce considerable lLandau damping and that--in practice~-these
modes will not impose a restraint upon beam intensity.

The physical concepts which form the basis of resistive
instabilities have been expounded in INS; there is no need to repeat
the discussion here. However, the physics for bunches of particles is,
perhaps, somewhat more transparent than that for a uniform beam, and
consequently we present it in Section II. Section IIT contains the body

of the analysis, culminating in a dispersion relation involving the
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solution of a set of homogeneous equations. The consequences of the
dispersion relation are explored in Section IV, first for a single bunch,
secondly for bunches which have different numbers of particles, thirdly
for equally spaced bunches of equal numbers, fourthly (numerically) for
intermediate cases, and finally for unequal bunch spacings. An
Appendix is devoted to analysis of a function--the Bunch Function--
which plays a fundamental role in the theory.

The reader interested only in results may turn directly to
Section IV; readers not interested in mathematics but wanting to
"understand”" the phenomena may find Sections II and IV adequate.

A report on part of this work was presented at the Particle
Accelerator Conference in March 1965;2 a preliminary report and abstract

of this work appears in the Summary Report of the SIAC Summer Study on

Instabilities in Stored Particle Beams.5

IT. PHYSICAL CONSIDERATIONS
In this section we 1limit our attention to the case of a single
bunch having no internal degrees of freedom. The analysis could readily
be extended to include many bunches, and also to include spreads in
particle revolution frequency (and hence Landau damping), but the
resulting analysis would then become more cumbersome than that employed

in Section III where the completely general problem is considered.

The simplified problem of this section has already been treated
1
in the literature;"s we repeat the discussion because (1) it is so

relevant to an appreciation of the contents of this paper, (1i1) it is

Q"m
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much more transparent than previous discussions (Ref. 1) or the analysis

of Section III, and (1i1) 1t is rather brief.

The physical basis of the ingstability is that in a resistive
vacuum tank, fields due to a particle decay only very slowly in time

after the particle hbs left. The decay can be so slow that when a bunch

returns after one (or more) revolutions it is subject to its own residual

field which--depending upon its phase relative to the wake field--can
lead to damped or undamped tranverse motion. We need, as a first
ingredient, the solution to the electromagnetic problem and this has
been given by a number of authors.5’6’7’8 From Ref. 8 we know that a
particle of charge Ne passing the point 2z =0 at time t = O while

traveling with speed PBc down a straight pipe of circular cross section

and radius b and oscillating transversely with displacement ¢ exp(+iwt)

will exert a force on a particle of charge e having speed Bc and

passing the point z at time t given by

1w
L e2 N ¢ 62 e+ z/Bc

(n');} bz - 6ct|é ,

for 1z < Bet (2.1)

F =

where (}e =hbhnxp o/c and ¢ 18 the conductivity of the pipe walls.

For z > Bct, the force is negligible in comparison with that of Eq. (2.1).

We can, with this force, immediately write an equation for the

transverse displacement Yy of the bunch, namely:

QEX BHX ( )
m L = F +ef y 2.2
0 ¥ o

at”
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where i, is the mass of, and F 1is the force on, one particle of
rest mass m in the bunch. In Eq. (2.2) we have neglected any local
fields of a bunch upon itself; these fields are generally less important
than the wake field and, in any case, of such a sign as to cause damping.
The last term in Eq.-(2.2) is the force due to the external field which
determines the transverse oscillation frequency vOmO of the unperturbed

bunch, in terms of which Eq. (2.2) may be written as

d 2 2 F
S s v o y = T (2.3)
0

with the particle circulation frequency mo ] Bc/R . The force F mst
be evaluated as a sum over contributions from all previous turns,
(z = -2¢Rn), and assuming that y varies harmonically (as 1t does),

we see that Eq. (2.3) becomes

f +iwwo t .90, _

‘ d2 s o +1vmot hegyﬁQE e 0 \ o iv2nn

k——§ + vy te = I 53 ) _____g_ ,

at (x()? v’ R om, iy (en)
(2.4)

where we have replaced  with o, - The sum 18 conveniently expressed

in terms of a function--the Bunch Function--and by Eq. (A9) of the

Appendix, Eq. (2.4) ylelds

2 2 uNe2p° G(2x,v)

v -V o=
(ﬁ@)i bo ™ Ri @,

0 P ’ (2-5)

og¥

with solution
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vV o= v, 1

q
_ G(en,v) , (2.6)
nﬁvi bj my R%(noe v02

where the positive sign is required to be consistent with the force
assumed in Eq. (2.1). TInstability occurs for Imwv < O and thus is
confined to those regions in which Im G(2n,v) > 0 . It is shown in
the Appendix [discussion following Fq. (A5)] that Im G(2r,v) >0

when I - % < ¥ <I where I 1is any integer. [This result is
consistent with that derived with only the first term in G ; 1i.e., the
residual field from only the last revolution.]

The physical basis of the instabllity is thus clear; more
bunches will simply cause mathematical complications, whereas allowing
frequency spread of the particles in the bunch will give possible
stability from lLandau damping in the range of instability disclosed
by the present analysis. In the absence of Landau damping, Eq. (2.6)

gives 8 growth time v, for I - f <v<I

/ L

.. Ty Y9 / b} bnoR 1 (2.7)
N | Rr.c Be |Im c(2n,v )| -
(O 0
;
2 2
where Ty = € /moc is the classical particle radius.

IIT. DERIVATION OF THE DISPERSION REIATION
We proceed directly, now, to the analysis of the general M-bunch
problem, including the dispersion of particle frequencies and hence
landau damping. We first consider the electromagnetic problem, then

particle dynamics.
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A. Fields
We obtain the requisite fileld expressions by employing the
results of INS, whose treatment is confined to a continuous beam, of
azimuthally constant density and dimensions, oscillating coherently

in such a mode that its transverse electric dipole moment per unit

length is of the form
pP(e,t) = y o(r,8,z,t)dr dz = P e , (3.1)

where p 18 the charge density of the beam per unit volume. We eﬁploy
cylindrical coordinates r, 6, z ; ¥y is the direction of transverse
oscillations, and we have ignored effects associated with the major

radius of the beam. From INS Eq. (2.25), the average force per unit charge

acting on the beam 1is

F 1/2 1 t
157 = P U + W( % ) e (no-wt) , (3.2)

where U and W depend on the geometry of the beam and the vacuum
chamber. For a circular beam (radius a) in a circular vacuum chamber

(radius b) they obtain, approximately,

2 1 1
Uu = -= [5-5
» 2 2
(3.3)
-1/2
W o= 2B (hg o) ,
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where ¢ 18 the conductivity of the wall material, expressed in
Gaussian units (dimension Tr]) and PBc  is the velocity of the

particles in the beam. The expressions of Eq. (3.3) are valid if

g>>w, g >> cg/d%p (d = thickness of vacuum chamber wall >> skin
depth), R/n >> b (wave length of oscillation >> transverse dimension
of chamber). For other geometries the expressions for U and W are
different, but subject to the above conditions, they still possess the

following characteristics: (a) U and W are independent of w and

of the mode number n ; (b) U contains the factor 1/72 , W does not;

(¢) U 1s sensitive to the beam dimensions, W 18 not; (d) W is
proportional to o_]/g .

The resistive (W) term in Eq. (3.2) arises from the skin
effect in the chamber wall. The derivation of this effect shows that
the sign of the square root must be dosen, regardless of the sign of w ,

in such a way that (1ﬁn)l/2 has a positive real part, corresponding

to an attenuated wave in the metal.
For a non-uniform beam with arbitrary time dependence, we may

write P(6,t) as a periodic function of 6 and a Fourier integral
in t :
~imwt
P(9,t) = Q(e,m) e am . (3.4)

By Fg. (3.2) the Fourier transform of F {8 then

) W | Q(e,m) . (3.5)
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Inverting the Fourier transform and noting that U and W are

independent of w , we obtain

£
F ]
L (6,t) = UP(o,t) + __w_f / P(6,t) L atr . (5.6)
on L

(t -t)2

To find the fields associated with bunches of arbitrary shape,
we use the somewhat indirect (but transparent) method of first finding
the field due to a single particle at the position of another single
particle, and then superimposing the results. Consider, therefore, a
single particle--the rth particle--circulating with angular velocity
wb and oscillating transversely with angular frequency V(no and
amplitude ¢ (we assume that all particles have the same angular
velocity wo).

The dipole moment per unit length due to this particle is

g+ vo, t)

E e 8,(6 -8 -wyt), (3.7)

P(e,t) = v

ool N¢)

where e 1s the charge of the particle, 6p is the periodic delta
function, ¢r is the transverse phase, and Qr is the azimuthal
location of the particle at t = 0 . Substituting Eq. (3.7) in

Eq. (3.6), we find

Wet e1(¢r + Vubt)

r

Z(e,t) = UP(e,t) + — o(a,v) ,
2n R @
(3.8)

where a =6 -8 - ot , and we have introduced the function Gla,v).
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The "Bunch Function" G(a,v) 1s defined as

. © -1y(a+2nk)
Gla,v) - on? V —————ge (3.9)
‘s (a + onk)

for 0 <a < 2rx , and is defined to be periodic in a with period

2x for other values of a [equivalent to starting the summation over
k , in Eq. (3.9), with the smallest integer greater than -a/2n ].

The Appendix is devoted to a study of the properties of this function;
it eontains alternative representations, approximate formulas, numerical

values, and some general theorems which will be employed subsequently.

B. Particle Dynamics

From Eq. (3.8) the force per unit charge on a particle moving
with velocity PBc , due to the oscillation and longitudinal motion of

the rth particle, 1is:

r

N
( ) = uPp(e,t) + _wj = Gla,v) exp[(g_ + wo t)1]
mo‘

\

ol

et
2rR
(3.10)
where P 1s given by Eq. (3.7), and «a = 8 +a,t - 8 . Consider the
motion of a particle--the sth particle, subject to the force of Eq. (3.10)
(evaluated at 6 =

0

external focusing field. Its equation of transverse motion is

t o+ 68) as well as the restoring force of the

2 2 We2§r ¢
m Yy« " v y)=eUPO s t,t) + expl1(¢_+wo t)] G(8_ -6 ,v) .
0 a 0 8 8 8 O 2““005 r 0 r G

(3.11)
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We study the normal modes of oscillation of an arbitrary collection of
particles by assuming they all oscillate coherently, with transverse
angular frequency vno . Thus the motion of the sth particle is

described by:

moxuoz(vsg - V2)§8 exp[i(¢8 + VDOt)] = el P(Ga + mot,t)

We2 \\

N £ expli(g_ + v t)] G(e_ - 6_,v),

enn»05 /
(3.12)

where V@ is the frequency of free oscillation of the sth particle,

0

To proceed further, we assume that the particles are bunched
tightly into M bunches, each of length L , the mth having Nm
particles., The particles have various amplitudes of oscillation ¢ ,
phases ¢ , azimuthal location © , and betatron frequencies vV, .

We describe this situation with a distribution function ¥ , taken of

the form

ve,e,4,v.) = N 2%5) D(¢,¢) £lv,) (3.13)

for © 1in the range (L/EnR), and zero elsewhere. The functions D
and f are normalized to unity. The dipole moment of a bunch, Qm s

i8 given by

G - e fﬂe,c,ws)g et aragae (3.11)

whereas the dipole moment per unit length P(6,t) = Qm/L .
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We obtain an equation for Qn by multiplying Eq. (3.12) by

2

ey , dividing by (vB - vg), and then integrating t, ¢, 6, and B

over the nth bunch. We also replace the summation over r by

summation over bunches and integration within the bunches:
' N 2R
/ —) (T>[ a®,, - (5.15)
r' /m
(particles)

to obtain

2
ny o 2 B r(vs)dvs ¢ UNnQn
o? % & < (v 2 - 9 L
8

A
o 5 L/enR
/ 2nR V2 We Ni I r {
v ( . ) 3 j J de_de_G(e - en,v)( .
{ . 2nRw ;
m 0 0
(3.16)
In the summation over m we must treat the nth bunch specially; for all
other bunches the bunch function may be treated as a constant and removed
from the integral. Within the nth bunch we use Eqs. (A12) and (A13)
to obtain .
> £lv_)av_ e u N, Q Wean N
Mo? Po Y = v 2 -9 L ¥ 3 [ % 08 - 8v)
8 2anO : m}n
I;/?ﬂR Q
+ R )2 de e 2 X )5 expl-1(8 -6 )]
Qn L m n Om- én XP ‘m n
0

Q, G(2n,v) . (3.17)

+
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Letting

- 0 (3.18)

and expanding the exponential in the integral of Eq. (3.17), valid for

vIL/2xrR << 1 , we obtain

eEUNnQn He2 Nn Y\R’M ( )
NQ = + 3 /. 68 -8,
L
Exﬂmo mén ]
r, -
| 8} |/ oan 12 R
Cq foen + B [(28) L -
u ) (3.19)

(Higher order terms in VL/QnR can easily be generated, if needed.)

Finally, we may write Eq. (3.19) in the compact form

(N U - A)Q, +N_ W / QG = 0, (3.20)
=
where
G . = c;(em - en,v) , (3.21)
4 3
8; /
¢ = G(2t,v) - —;—5 (—2—%) vi (3.22)

and
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W= —-———3—62” (3.23)
2 R mo
2 3
Ut = C] Ca 8; ( 2¥R ) oW (5.24)

In the next section we shall discuss the solution of Egs. (3.20); the

equations are valid for the coherent motion of short bunches.

IV. CONSEQUENCES OF THE DISPERSION RETATION
We wi{ll, in this section, study the set of homogeneous linear
equations {Eq. (3.20)] for the dipole moments Q - These equations
are of the form of a standard eigenvalue problem: The eigenvalue X\ must
be determined in such a way that the determinant of the coefficients of
the Q  vanishes. Then, from Eq. (3.18), one solves for v which gives

| oY

e -~ Aansral aremas +

4 ~
LIS U vo LUPAHCII\J w

o
c+
v

ly--by Eq. (3.7)-~t}
Clearly the motion is unstable if the imaginary part of v 1is negative,
stable if the imaglinary part is positive.

The case of bunches with no spread in betatron frequencies, and

hence no Landau damping, is simplest to consider. From Eq. (3.18), with

VO the common betatron tune,

) A
e - (h.1)

and hence

v ad v - y ("02)
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since v must have the sign of VO . Thus the motion is unstable if
and only if Im XN > O .

With Landau damping included, the motion is slways stable if the
ImAx < O ; with Im X > O the motion can still be stable, with the
stability depending upon the Re A and the distribution function f(vs) .
This point is discussed at some length in INS, and all the analysis
glven there is applicable here. The new feature, of this paper, is the
expression for A In terms of the properties of the accelerator and

the nature of the particle beam. We shall concentrate upon this aspect

of the problem, treating a number of different cases.

A. One Bunch

For one bunch of N particles Eq. (3%.20) becomes
- ' ' . b,
A N[U' + W cm] (4.3)

Inserting Eq. (4.3) into Eq. (4.1)--corresponding to no lLandau damping--

and using Egs. (3.22), (3.23), and (3.24) yields:

o 2 N L% e Pné R (2 83 L
Y Y ) m.y mbg L ' Qﬂﬁboi 3 ( L ) 6(2n,v) 15 ( onR

If we drop the terms which are purely real--as they won't affect the

stability analysis (to lowest order)--and employ Eq. (3.3), we have

8n§

L R
22 L |
O ine?p? [ G(2x,v) - 5 (o) L (h.1)
(n(\{)5 bo 7 mo"& “’02 ox?
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)

where ' = hnfg/c . Compare this result with Fq. (2.5), which was
derived employing wake fields. It agrees with the simple analysis
except. for the addition of the local-field term [which had its source
in 6(8,v) for 0 <8 << 2x]. For a short bunch the local field is
negligible compared to the residual fileld from previous turns, and the
analysis of Section IT is valid: The motion is stable if and only if v
l1ies above an integer; namely I < v <1 + % , for any integer T .
[Derivation of this result and further discussion may be found in
Section II, following Eq. (2.6).] |

In the more general case, where local fields are important, one
can employ Eq. (4.4). If Landau damping is to be considered also, then
one must resort to Eqs. (4.3) and (3.18).

It 18 interesting to consider the case of a very large accelerator
--that 1s, a particle moving down a long straight resistive pipe. 1Is
it stable or unstable with respect to transverse oscillations? To
study this case, we take the 1limit of Eq. (4.4) a8 R - m. Introducing
in place of v , the distance, LB, that the particle travels during

-1
one transverse oscillation period [durastion (wno) } , we observe that

9

v = R/)\B - . Consequently the local-field term in Eq. (4.l4) dominates
G(2n,v) --in agreement with Eq. (A9) of the Appendix which shows that
G(en,v) consists only of contributions from previous turns. The
remaining term yields Im v > O , and hence the motion is stable.lo Ve
may readily pursue the problem further and compute the damping rate,

which is a factor of exp(-(Im v)v0°1] in each transverse oscillation
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period. From Eq. (4.4), the damping factor per period, f , is:

SN
£ = exp| el ro)‘p\} L )é ;: (k.5)
£ = — , .
tlﬂ Y bi' 2ﬁ/
where ry = ee/moce {8 the classical particle radius, the bunch of

length I has N particles and travels down a resistive tube of
radius b while oscillating with transverse wave length KB . The
quantity 63-1 is a skin depth, and Eq. (4.5) is valid for

Ng >> L>> b >> (ﬂ'l .

B. Many Nonequal Bunches

If the number of particles, Nn , in the various bunches are
unequal, then the set of equations for the Q (Eq. (3.20)] has non-
degenerate eigenvalues in the 1imit that W' - O . In this case, and
for small W' , the eigenvalues, x(n) , are given to first order in

W' only by the diagonal terms of the matrix:
— ' ' - o0 e
x(n) = Nn[U + W cnn], n=1, M. (L.6)

The M eigenvalues of Eq. (4.6) are the same as one would obtain for
M independent bunches. Just as for one bunch, for many bunches we are
assured of stability if Im A <O ; that can be accomplished by choosing
I <v<TI+3, for any integer I .

The result obtained is easily understood since for bunches of
unequal number Nn , the natural frequency of each bunch is different

from that of any other bunch. Thus most of the influence of one bunch
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on another averages out to a large extent (to be precise, it is removed
from first order), and hence the bunch notion is dominated by the
influence of one bunch upon itself. The natural frequencies of the
bunches are almost equal, however, since the frequency difference is
due only to the effect of image terms. Quantitatively, the bunches
will act independently when the interbunch contribution to the coherent
frequency is small compared with the difference in bunch frequency:

For all m and n , an W' Gmn' < (N - Nm)IU'I . Since W'
involves the resistivity and U' does not, U' {18 often much larger
than W' and this condition is satisfied with only modest differences
in the bunch numbers. In the extreme relativistic 1limit, however, U’
vanishes since the electric and magnetic images tend to cancel.
Dielectric loading and other similar devices can be used to keep

U' >> VW', as has been discussed in the 11terature;11 for a smooth

vacuum tank the criterion for independent bunch motion is, from

Egs. (3.23), (3.24), (3.3), and (A9) (taking a = b/2),

L
’ (4.7)

o o (Bp)E M
N by vb(R(ﬁ‘)} :

where N 1is the number of particles in one of the M bunches--each

of length L --and AN 1is the required difference in number between

bunches. More generally, the requirement on AN for independent

bunch motion 1is:

A (eM)é‘lg——:- : (1.8)
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In the case of independent bunch motion, and when v is below
an Iinteger, the motion is unstable except for landau damping. The
extensive discussion of INS may now be applied, with k(n) glven by
Fq. (4.6): For |u'| > IW'Gnnl the threshold particle intensity
for an instability 1is approximately proportional to U' and almost
independent of W' . From Eq. (3.2)) it is seen that the threshold
intensity depends upon the tightness of bunching [(U' « L-l ],

whereas from Eq. (3.23) 1t is seen that the growth rate (when above

threshold) is independent of the degree of bunching.

C. FEqually Spaced Bunches of Equal Intensity

In some circumstances--usually for beams of extremely
relativistic particles--the inequalities for independent bunch motion
are strongly violated. It is then pcssible that a different approximation
becomes valid; namely, that all the bunches are sensibly equal in
intensity. The case of equally spaced bunches of equal intensity is
one for which the solution of Eq. (3.20) is immediate.

Teking N = N, and 6 = 2r m/N , we observe that Eq. (3.20)

can be written in the form

(NU' + Wi'G_ - A]JQ + W' G Q= O, (L.9)

(

ot
where G =G e (m-n) ;) and G is {from Eq. (3.22)] independent
mn M ’ nn - i

of n . Relabelling the sum, we obtain
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(NU* + WG X]Qn + NW //) G\ Tl v/) Q,r ,
=1

in which all the coefficients are independent of n . The matrix is
cyclic and the solution well-known. In particular, let

-Eﬂmi/M
8(m) = © (4.11)

be the mth of the M roots of unity.

Then clearly an mth solution of
the set of equations is

Unin = (m) 7

(4.12)
with associated eigenvalue:
M-1
' nr T
_ (] ' ' =
x(m) = NU' + WW'G + NW ) G <'M , vj) 8(m) (b.13)
=1
This may be written, from Eq. (3.22), in the form:
M
bt g b V(e )
- | ' . — 1] il
Mpy = NU' - W' 5o ( SR )T vi o+ NW 1> 6 S5, v)e .
r=1
(h.1b)

By Eq. (A18) of the Appendix, the M eigenvalues are

mev Bﬂé L

| (B.15)
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If we ignore the self-field term then, by Eq. (A5), the
imaginary part is positive when (v + m)ﬂﬂ lies between an integer
and the next lower half-{nteger, and negative in the other half-
interval. Therefore, if M 18 even, half the eigenvalues have
positive and half have negative imaginary parts; if M 1is odd, one
more has a positive imaginary part than a negative one (or vice versa).
. The only case where there is no eigenvalue with a positive imaginary
part occurs when there i1s only one bunch and v 1lies in the proper
range.

The self-field term is stabilizing, of course, and could improve
the situation, but it appears unlikely that machine parameters would be
such as to have this term important. Also, finslly, Landau damping can

make some (or all) of the modes with Im A > 0 stable.

D. Numerical Calculations

A computer program has been prepared which obtains the eigen-
values and eigenvectors of Eqs. (3.20) [with the second term in
Fq. (3.22) omitted] for given values of the ratio W'AJ' and given
distributions of bunch populations Nn , and for uniform spacing of the
bunches. As is expected, it is found that if W' << AN/MN and
W'/U' >> AN/N, respectively, the results behave as described in
Gecs, IV.B and IV.C.

In the intermediate case, for M = 12 bunches and v = 8.85

(corresponding to the Brookhaven AGS), the real parts of the normalized
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eipenvalues are plotted as functions of W'/U' in Fig. 1, for the case
that the relative bunch populations vary in stepa of 10-3 from 1.000 to
0.999. The largest value of W'/U' for which all modes have positive
imaginary parts 1is 1.5 ~ 1o'h, which Jjust about corresponds to
replacing the inequality in Eq. (4.8) with an equality. For W'A)
four times as large, or larger, six modes have negative imaginary parts,
as in the 1limit where all bunches are equally populated.

Note that, for W'AJ' greater than the "threshold"” value

-1
(1.5 ~10""

in this case), the real part of the highest eigenvalue
increases rapidly with W'/U' while the lower ones change much less.
Examination of the corresponding eigenvectors discloses that this mode
is a "collective" mode in which all bunches participate in the motion,
with relative phases corresponding to that integral wave number which
lies closest to v (in this case, 9). In all the other modes some of
the bunches participate far less than others, especially for relatively
small W'AU'. For example, with W'A' = 5 ~ 107", the amplitudes of
oscillations of the various bunches vary n 50

"collective" mode, from 1.0 to 0.068 in the next highest mode, and
from 1.0 to 1.3 x 10"5 in the mode whose eigenvalue has the smallest
real part.

A more detailed study of these regularities lies beyond the

scope of the present paper and will have to be left to future investiga-

tions.
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E. Unequal Spacing

For the case where the bunches are not equally spaced, we have
not succeeded in deriving any general theorem about the behavior of
the solutions. Numerical studies show that with just two equally
populated bunches there is always one stable and one unstable mode,
no matter how cloge the two bunches are; when two of many bunches have
the same population there is always at leagt one stable and one unstable
mode. When there are jJust two bunches this property can be shown to

be equivalent to the statement that
| m c(2n,v)| < |Im [c(8,v) c(2n - 8, v)]% |,

a relation which can be inferred for small 8 from the approximations
(A12) and (A13), but which we have not yet demonstrated for all 6 .

This result indicates that, with bunches of finite length,
there will always be unstable modes corresponding to relative motion
within a bunch. We belleve, however, that these modes will, in practice,

be stabilized by Landau damping, as stated in the Introduction.
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APPENDIX

In this Appendix we analyze the Bunch Function G(8,v), which

is defined by:

. -iv(8+2xk)
e

a(e,v) - 2@ j ‘ — (A1)
=g (8 + 2rk)

where k ranges over nonnegative integers, v 18 nonintegral, and

0 <8 <2¢t . Outside this range of 8 , G(8,v) 1is defined by the

periodic continuation of Eq. (Al). There is evidently no difficulty in

passing to the 1imit © = 2x , and we define G(®,v) by Eq. (Al) also |

for © = 2x .

1. Alternative representations.

Because of the general formula for the Gaussian integral

P 3

eV S (1), (Rea 20),  (h2)

5 Vy

ve may rewrite Eq. (Al) in the form

N -(y+1v)(0+2xk) z
G(e,v) = 2 é e dy/y* . (A3)
=0 0

Interchanging swmation and integration, we have a convenient integral

representation:

00 -(y+iv)®
cle,vy) - 2 f e-2ﬂ(y+1v) 9;% , 0<®<2or. (ah)
0

1l -e

e AN - [ S .
L Ta————rO S~ et | e T T P [ .

A T e o gt e bt e <
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The sign of the imaginary part of the Bunch Function plays a
crucial role in stability analysis. From Eq. (Al) it 18 clear that,

for 8 = 2n ,

dy e 2
Im G(2n,v) = -2 sin 2nv f Le , (As)

2
yi |1 - e-2r(y+iv))

and from the positive definite character of the integrand, the
Im G(2t,v) 18 negative for I <v <I + %4 and positive for I - 3 <y < I
for any integer I . Since G 18, by definition, periodic, it may be

expanded in a Fourler series

s o]
5, -1n6
G(O;V) = / gn e n y
n= -
with
21
1 in®
& = B / G(e,v) e de . (A6)

Using Eq. (Al) we find

a
. i
L J (v + 1v - m1y?
(0]
- 1 J[ dz
" ) oo 2° + 1(v - n)

(Equation AT continued)
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/e -t n> v
= ( » (A7)
{ -1/v - n)}é

n<y

with the sign of the root chosen so as to make the real part of &,

positive in all cases.

Therefore an alternate form for G 1is

@ !
cle,v) = ) (( 1 ) o118 (A8)

/ n-v .

n=-am
with the sign of (i/n - v)% chosen so that its real part is positive.

2. Summation formulas and approximations,

For computational purposes 1t 18 convenient to compute the sum
(A1) over a finite number of terms and to estimate the remainder. We
need only carry out the procedure leading to Eq. (Ab4) with the sum

from k=M to oo converted to an integral:

G(e,v) = on? i?L o~ tv(@v2mm)

= [e + 2ﬂm]é
an
-(0+2xM) (y+1v)
" 9[ 7 " : (A9)
4 -on(y+1v)
y [1-e ]

For large M , the integral in Eq. (A9) becomes very small and

may be approximated by an asymptotic formula. Writing
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. L
1 1 \a) e-?ﬂiV(e-Cﬂy l) ]
1 e’2ﬂ1y+iv—) [1 e—2ﬂiv] é/ [1 e-?ﬂiV] ( ’

(A10)

we can easily generate such a formula. In particular, the first two

terms yield
a
, dz_?-(e+2xm)(y+1v) N eui -(B+2nM) tv

0 yi (1 - e-zﬂ(Y+iv) ] (1 - e-zﬂiv)(e + EKM;}

_ ]
< lq. “eaﬂiv J
~oniy
(1 -e )(8 + 2nM)

(A11)

From Eq. (A9) we can readily obtain 1limiting values of the

Bunch Function. Thus for 0 <6 £ 2r ,

2"% -ive 3 ’m e-—iv(9+2ﬂm)

+ 2n ) ,
ez ;,—f;i (e + 2xn]?

c(e,v) =

and for 8 << 2n we can neglect 6 in the sum to obtain

c(e,v) = 2(x/b)% e Ve, G(2x,v), for € <<2rn . (Al2)

For e <0, G(-]e]|,v) = ¢(2x - |8],v), and since G(8,v) varies

slowly for 6 - 2rn , we have:
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o(-18],v) =~ c(on,v) , 8 << 2n . (A13)

Numerical values' of 6(®,v) , obtained employing Eq. (A9),
are displayed in Figs. 2 and 3. Values of the Bunch Function outside

the range displaved can be obtained from the relation

-in®
e

(8 + Pxm,v + n) - 6(e,v) , (A1h)

valid for all integers m and n , which follows immediately from the

definition of G(8,v) [see Eq. (A8)].

<
§
P
r

We wish to evaluate the sum S defined as

~M
s = > o 2rmriM o 3",% , V), (A15)

r)

where m,r, and M are integers. Employing the representation of
Eq. (A4), and interchanging the finite summation and the integration

yields

fOD dy ng e_ew[(m+v)1+y]r/M .

s = 2
jo yi (1 - e-2(y+iv), zééi

(A16)

The summation is immediate and ylelds

U S o e ppre———— L
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dy
S = 2 .
Z yifl _ e-?ﬂ(Y*iV)] [1 _ e-?ﬂ[(m+v)i+y]/hl

Since

UCRL-16751
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-2 [ (mav)14y]]
J

) . e-?ﬂ[(m+v)1+y]/M [1

(A1T)
exp(-2nm) = 1, we have--after replacing y/M with Yy--
X c2nlFHmw) I M]
é dy e
oo 1 oxlFHmw) M) | (o)
- {l-e- y+(mw J

which, on comparison with Eq. (Ak), ylelds S -

Mi G( 2x, ) .

m+y
M
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9. In the limiting process we must ohserve the condition VI/@%R << ]

required to obtain Eq. (3.19). This condition 1s satisfied if

I, < QKXB .

10. The result for rectilinear motion has been obtained in a somewhat
roundabout manner; the reader may welcome the following more
straightforwvard argument. For a single particle in a straight
pipe the Bunch Function, as defined by Eq. (5.9), becomes modified
in an obvious way; namely, the periodic delta function of Eq. (5.7)

18 replaced with an ordinary delta function with the result that

[see Eq. (A8)]

. % -ike

G(e,v) - Gs'p.(e,v) = dk (k

The Straight Pipe Bunch Function may readily be evaluated by contour

integration with the result

Gsp(e,v) =

0 , @ < 0.

This is seen to be exactly the same as the m = O term in Eq. (A9);
dynamical analysis will consequently lead to a result analogous to

Fq. (h.4), but with the term G(2x,v) absent.

The argument Just given is not, however, immune to criticism:

tte integration over k there is a range where k 18 near v and

In
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one of the criteria for valid fieid expressions, namely w >> ce/dga,
is not satisfied. One can answer the criticism by replacing the
field expressions of Eq. (%.3) with more generally valid expressions,
given in Ref. 8, and then evaluating Gﬂp(G,v) . This {8 a very
tedious calculation--which has not been performed--but, because

the range of invalidity of Eq. (3.3) 18 exceedinply narrow one
expects only very small correctinns to Ggp(e,v).

Note that the derivation given in the body of the paper is
not subject to criticism, since for any large (but not fantastically
large) R , the sum employed in the deTinition of G(8,v) completely
avoids contributions from the small region where the skin depth
exceeds the vacuum chamber wall thickness.

A. M. Sessler, in STAC-49, Aug. 19065 (see Ref. 3), p. 8.
M. Allen, M. Tee, and J. Rees, in SIAC-49, Aug. 1965 (see Ref. 3),
p. 49. We wish to thank these authors for supplying us with the

numerical results presented here.
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FIGURE CAPTIONS

Real parts of the eigenvalues of the matrix defined by Eq. (3.20)
as a function of W'AJ' for M - 12 bunches, v - 8.85, and
bunch populations ranging from 1.00 to 0.949 in steps of 0.001.
The dots are cases in which the imaginary part of the eigenvalues
are positive; crosses correspond to negative imaginary parts.
Values of the real part of the Bunch Function G(8,v) for
0<@<2¢t and v = 0.1, 0.9 (0.2). The function is defined

by Eq. (A1). (See Fig.2a and Fig. 2b)

Values of the imaginary part of the Bunch Function G(8,v) for
0<©e<2x and v = 0.1, 0.9 (0.2). The function is defined
{Al).  (See Fig. 3a and Fig. 3b)
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