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ABSTRACT

The transverse electromagnetic coupling of bunches of particles

with each other is investigated theoretically, and shown to incorporate

.&.\- J\- ... ,~.i. ...
LII'=' PUtHLLU.l.L.1.L.Y (due to the effect of nonperfectly __ ,.._~ •• ,...i."' __ _

\';UJIUUC L..LUf:S VClLUUJU

chamber walls) of coherent instability even when the longitudinal

distance between bunches is much larger than the transverse dimensions

of the vacuum tank. The modes of oscillation in which the bunches

move rigidly are investigated; criteria for stability, and expressions

for the small amplitude growth rates under unstable conditions are

presented. The case of a single bunch is considered in detail and

demonstrated to be stable (even in the absence of landau damping)

provided V lies between an integer and the next higher half-integer,

where V is the number of transverse free bet~tron oscillations

• Research supported by the U. S. Atomic Energy Commission.
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occurrtng in one revolution; for rnany bunchea ;;h.ich are Benslbly-

different in intpnsity (a criterion for thIs is presented), all modes

are stable provided V satisfies the same restriction. For equally

spaced bunches of equal numbers of particles, approximately half the

modes are unstable without Landau damping. Numerical examples are

presented covering Borne intermediate situations.



UCRL-16751

-1-

I. INTRODUCTION

The possihle instability of coherent transverse oscillations

of an azimuthally uniform beam of particles circulating in a metallic

1vacuum chamber has been studied by Laalett, Neil, and Sessler (lJ.JS),

who showed that under certain circumstances the finite resistivity of

the vacuum walls could cause growing oscUlations. In most accelerators,

the rf acceleration mechanism generates azimuthal non-uniformity of

particle density, and consequently the work of IRS is not applicable

to the analysis of transverse instabilities of the beam. In this work

we treat a complementary idealization to that of IRS--namely, a beam

consisting of a number of bunches which are assumed to have no coherent

motion of the internal degrees of freedom.

We have not, in this paper, studied coherent modes within a

bunch. We expect that in the absence of TBndau damping some of these

modes will be unstable, but we also expect that the synchrotron motion

will introduce considerable Landau damping and that--in practice--these

modes will not impose a restraint upon beam intensity.

TIle physical concepts which form the basis of resistive

instnhil1ties have been expounded in LNS; there is no need to repeat

the discussion here. However, the physics for bunches of particles is,

perhaps, somewhat more transparent than that for a uniform beam, and

consequently we present it in Section II. Section III contains the body

of the analysis, CUlminating in a dispersion relation involving the
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solution of a set of homogeneous equations. The consequences of the

dispersion relation are explored in Section IV, first for a single bunch,

secondly for bunches which have different numbers of particles, thirdly

for equally spaced bunches of equal numbers, fourthly (numerically) for

intermediate cases, and finally for unequal bunch spacings. An

Appendix i6 devoted to analysis of a function--the Bunch Function--

which plays a fundamental role in the theory.

The reader interested only in results may turn directly to

Section IV; readers not interested in mathematics but wantin~ to

"understand" the phenomena may find Sections II and IV adequate.

A report on part of this work was presented at the Particle

2
Accelerator Conference in March 1965; a preliminary report and abstract

of this work appears in the Summary Report of the SIAC Summer Study on

Instabilities in Stored Particle Beams. 3

II. PHYSICAL CONSIDERATIONS

In this section we limit our attention to the case of a single

bunch having no internal degrees of freedom. The analysis could readily

be extended to include many bunches, and also to include spreads in

particle revolution frequency (and hence Landau damping), but the

resulting analysis would then become more cumbersome than that emp]oyed

in Section III where the completely general problem is considered.

The olmplif1ed prohlem of this sect.ion hUB o]renoy been treated

I~ ')
in the literature; , we repeat the discussion becauae (i) it io 00

relevant to an appreciation of the contents of this paper, (ii) it is
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much more transparent than previous discussions (Ref. 1) or the analysis

of Section III, and (iii) it is rather brief.

The physical basiB of the inst~billty 18 that In a resistive

vacuum tank, fields due to a particle decay only very slovly in time

after the particle has left. The decay can be so slav that vhen a bunch

returns after one (or more) revolutions it is subject to its own residual

field vhich--depending upon its phase relative to the vake field--can

lead to damped or undamped tranverse motion. We need, as a first

ingredient, the solution to the electromagnetic problem and this has

been given by a number of authors. 5,6,7,8 From Ref. 8 ve knov that a

particle of charge Ne passing the point z = 0 at time t = 0 vhile

traveling vith speed ~c down a straight pipe of circular cross section

and radius b and oscillating transversely vith displacement E exp(+lint)

vill exert a force on a particle of charge e having speed ~c and

passing the point z at time t given by

F =

2
I~ e N

2 +1mz/~c
~ ~ e for z < ~ct (2.1 )

vhere (j{ = 4 1£ B alc and a is the conductivity of the pipe valls.

For z > Bct, the force is negligible in comparison vith that of Eq. (2.1).

We can, vith this force, immediately write an equation for the

transverse displacement y of the bunch, namely:

rmO
F + e~

dH
x
~ y,
uy Y""O

(2.2)
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where rma is the mass of, and F Is the force on, one particle of

rest mass in the bunch. In Eq. (2.2) we have neglected any local

fields of a bunch upon itself; these fields are generally less important

than the wake field and, in any case, of such a sign as to cause damping.

The last term in Eq. (2.2) is the force due to the external field which

determines the transverse oscillation frequency Vailla of the unperturhed

bunch, in terms of which Eq. (2.2) may be vritten as

=
F

7JT1a

with the particle circulation frequency illa - ~c/R. The force F must

be evaluated as a sum over contributions from all previous turns,

(z : -~Rn), and assuming that y varies harmonically (as it does),

we see that Eq. (2.3) becomes

/ l'n:

-lv2rcn
e

(2n'n)~

(2.4)

where we have replaced ill with VOOa , The sum is conveniently expressed

1n terms of a functlon--the Bunch Functlon--and by Eq. (A9) of the

Appendix, Eq. (2.4) yields

=

with solution
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, 2 2 l

V "" Vo II - Ne t3 G(2n' l Vi
V

0
2'J, (2.6)

J( Oil! b~ 7rno R (1)0
2

where the positive sign is required to be consistent with the force

assumed in Eq. (2.1)~ Instability occurs for Im v < 0 and thus is

confined to those regions in which 1m G(2n',V) > O. It is shovn in

the Appendix [discussion following Eq. (AS)] that Im G(2n',v) > 0

when I - ! < V < I where I is any integer. [This result is

consistent with that derived with only the first term in G ; i.e., the

residual field from only the last revolution.]

The physical basis of the instability is thus clear; more

bunches will simply cause mathematical complications, whereas allOWing

frequency spread of the particles in the bunch will give possible

stability from T~ndau damping in the range of instability disclosed

by the present analysis. In the absence of Landau damping, Eq. (2.6)

gives a growth time T for I - ! < V < I

/ ) ('..on
!

J( 7 Vo I-L 1
T =0

-, 1m G( 2n: , V0) I (2.7)
N \ Rroc/ \ ~c

where e2/moc
2

r O is the classical particle radius.

III. DERIVATION OF TIlE DISPERSION REIl\TION

We proceed directly, now, to the analysis of the general M-bunch

problem, including the dispersion of part.icle frequencies and hence

Landau clamping. We first consider the electromagnetic problem, then

porticle dynamics.
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A. Fields

We obtain the requisite field expressions by employing the

results of INS, whose treatment is confined to a continuous beam, of

azimuthally constant density and dimensions, oscillating coherently

in such a mode that its transverse electric dipole moment per unit

p(S,t)

length is of the form

,Jy p(r,e,z,t)dr dz 0 P
i(nS-<.Ot)

e ,
n

where p is the charge density of the beam per unit volume. We employ

cylindrical coordinates r, El, z; y is the direction of transverse

oscillations, and we have ignored effects associated With the major

radius of the beam. From T~S Eq. (2.25), the average force per unit charge

acting on the beam is

= P
n

u i 1/2 j
+ w( - )

ill

i(n8-<.Ot)
e

where U and W depend on the geometry of the beam and the vacuum

chamber. For a circular beam (radiUS a) in a circular vacuum chamber

(radiUS b) they obtain, approximately,

U

W

2 (1 _~)2 a2 b2
'1

(3.3)

. 2 -1/2
4c~

(Il1f (J)
7
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where a is the conductivity of the wall material, expressed In

Gaussian units (dimension 'r]) and Be 1s the velocity of the

particles In the beam. The expressions of E'1' (3.3) are va] id if

a »m , 21 2(J »c d ().l (d = thickness of vacuum chamber wall » skin

depth), H/n» b ('W'ave length of oscil1ation » transverse dimension

of chamber). For other geometries the expressions for U and Ware

different, but subject to the above conditions, they still possess the

folloving characteristics: (a) U and Ware independent of m and

of the mode number n; (b) U contains the factor 1/7
2

, W does not;

(c) U is sensitive to the beam dimensions, W is not; (d) W is

proportional to
-]/2a •

The resistive (W) term in Eq. (3.2) arises from the skin

effect in the ctmmber wall. ~~e derivation of this effect sho'W's that

the sign of the square root rmst te cln6en, regardless of the sign of m,

in such a 'W'By that (1/m)1/2 has a Eosltlve real part, corresponding

to an attenuated wave in the metal.

For a non-uniform beam with arbitrary time dependence, we may

write p(e,t) as a periodic function of Q and a Fourier integral

in t

p(e,t) /00
-00

-llOtQ(Q,m) e dill • (3.4 )

By Eq. (3.2) the Fourier transform of F 18 then

I" 1/2

W1IU i
+ ( ) Q( e,(0) .

l ill
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Inverting the Fourier transform and noting that U and Ware

independent of ill, we obtain

F
.J. (S, t) =. U p( S, t}
e

it
-00

p(s,t') 1 dt'
(t - t')~

( 3.6)

To find the fields associated with bunches of arbitrary shape,

we use the somewhat indirect (but transparent) method of first finding

the field due to a single particle at the position of another single

particle, and then superimposing the results. Consider, therefore, a

single particle--the !th particle--circulating with angular velocity

illO and oscillating transversely wIth angular frequency VillO and

amplitude E (we assume that all particles have the same angular

ve locity rna).

The dipole moment per unit length due to this particle is

p(s,t} e
R

i( ¢r + Villa t)
e 6 (9 - 9 • roo t) ,p r

where e is the charge of the particle, 6 is the periodic delta
p

function, is the tranaverse phase, and S
r

is the azlmuthal

location of the particle at t = O. Substituting Eq. (3.7) in

Eq. (3.6), we find

I (s,t)
e

U p(s,t) +
We ~

r G(a,v}

where a = e • A - ill_ t
r U

and we have introduced the function G(a,v).

--_.~--~_._...-
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The "Bunch Function" G(a,v) is defined 8S

en

G(a,v) c ;>,,; )_~

k=O

-iv(a+2rrk)
e

for 0 < a::: 21l , and is defined to be periodic in a with period

21f for other values of a [equivalent to starting the summation over

k , in Eq. (3.9), with the smallest integer greater than -a/21l ].

The Appendix is devoted to 8. study of the properties of this function;

it ~ontain8 alternative representations, approximate formulas, numerical

values, and Borne general theorems which will be employed subsequently.

B. Particle Dynamics

From Eq. (3.8) the force per unit charge on a particle moving

with velocity t3c, due to the oscillation and longitudinal motion of

the rth particle, is:

U p( B,t) + -;
m lit

o

e~r
21tR

( 3.10)

G( e - e ,V)
r G

where P is given by Eq. (3.7), and a = Br + mot - e. Consider the

motion of 8 particle--the !th particle, subject to the force of Eq. (3.10)

(evaluated at B = fiOt + Bs ) as veIl 8S the restoring force of the

external focusing field. Its equation of transverse motion is

We2~
+ r! expfl(¢r+Wlot )]

21lT\oO

().H)

---- ~--- ~ ~-------
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We study the normal modea of oscillation of an arbitrary collection of

particles by assuming they all oscillate coherently, vith transverse

angular frequency 'Ina. Thus the motion of the 6th particle is

described by:

2We
-f

2ltRnoi r

~ exp[ i ( ¢ + v:n()t) 1 G( 8 - 8 , v)r r r s

<3. 12)

vhere vBmO ia the frequency of free oscillation of the 8th particle.

To proceed further, ve assume that the particles are bunched

tightly into M bunches, each of length 1. , the mth having N
m

particles. The particles have various amplitudes of oscillation ~,

phases ¢, azimuthal location e, and betatron frequencies Varna.

We describe this situation vith a distribution function " taken of

the form

for e in the range (L/2ltR) , and zero elaevhere. The functions D

and f are normalized to unity. The dipole moment of a bunch, ~,

is given by

"m e f t( e, ~,¢,Vs ) ~
i¢

d~ d¢ de , (3.14 )e

whereas t.he dipole moment per unit length p(e,t) = Q II.
lJI"
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We obtain an equation for ~ by mu1tiplyinp; Eq. (3.12) by

e~ , dividing by
2 2

(V - V ), and then inter,ratlng
s

~, ¢, 8, and V
s

over the nth bunch. We a180 replace the summation over r hy

Bummation over hunches and integration ..,i thin the bunches:

/
r

(particles)

d6
m

to obtain

2 Jf(v )dv e21JNn~s 6
ma7 (J)a ~ (2 2) LV - V

8

"
We

2
N

L/21f.R lI ~ .~ ,,2 -~ ( (
( ~n )

n III

~ J
de de G(e - en,v) (+

2dw iI
m n m

I
m 0

( 3.16)

In the summation over m we must treat the nth bunch specially; for all

other hunches the bunch function may be treated as a constant and removed

from the integraL Within the nth bunch we use Eqs. (A12) and (An)

Q G( 8 - e ,v)
""In m n

! \ -

l! !.
. min21f.Rn ia

We~
n

+

1
·~

d6
n

o
d8m

I
f(V )dV

s s { .2 U :n Qn

L/2ffR

+ ~ ( ~B)I
+ ~ G(2ft,V) ]I

to obtain
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Letting

J
.f(V )dv

B 8

2 2
V - Vs

(3.18 )

and expanding the exponential 1n the integral of Eq. (3.17), valid for

VL/2lfR « l, we obtain

.',-
min 1

!( 2,t )! - ~v ( ~R )!]] f

J

8nJ
+ -

3

+ 2J(1W i
o

r,
+ ~ tG{ 21f , V )

(Higher order terms in VL/21fR can easily be generated, if needed.)

Finally, we may write Eq. (3.19) in the compact form

(Nn U' - ~)~ + Nn W' l. ~ GITUl ::: 0,

m

(3.20 )

where

( 3.21)

G
mm

::: G(21f,v)

,
8rc
15

I L )'
\ 21tR V i (3.22)

and
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W'

V' +
21I:R

L

In the next section we shall discuss the solution of Eqs. (3.20); the

equations are valid for the coherent motion of short bunches.

IV. CONSEQUENCES OF THF. DISPERSION RElATION

We Will, in this section, study the set of homogeneous linear

equations [Eq. (3.20)) for the dipole moments Qn
These equations

are of the form of a standard eigenvalue problem: The eigenvalue ~ must

be determined in such a way that the determinant of the coefficients of

the Q
n

vanishes. Then, from Eq. (3.18), one solves for V which gives

i~med1ately--by Eq.

Clearly the motion is unstable if the imaginary part of V is negative,

stable if the imaginary part is positive.

The case of bunches with no spread in betatron frequencies, and

hence no Landau damping, is simplest to consider. From Eq. (3.18), with

Va the common betatron tune,

2 2 ~

V Vo 2
"U 7 ID

O

and hence

"-
." ...

"'0 2
2ma 7 Vo IDa



UCRL-167S1

-ll~-

since V must have the sign of Va' Thus the motion is unstable if

and only if 1m ~ > a.

With J~ndau damping included, the motion is always stable if the

Im ~ < 0; with 1m ~ > 0 the motion can still be stable, with the

stability depending upon the Re ~ and the distribution function

This point is discussed at Borne length in IRS, and all the analysis

f( V ) •
s

given there is applicable here. The new feature, of this paper, is the

expression for ~ in terms of the properties of the accelerator and

the nature of the particle beam. We shall concentrate upon this aspect

of the problem, treating 8 number of different cases.

A. One Bunch

For one bunch of N particles Eq. (3.20) becomes

N[U' + W' G ] •
nn

Inserting Eq. (1~.3) into Eq. (4.1)--correaponding to no Landau damping--

and using Eqs. (3.22), (3.23), and (3.24) yields:

yo2 - y2" N 2 re% + e2" [sre
i ( 21tR )! + G(2Jf,v)

m 7 ill 1L 21tR'J.);.3 La a 0

~ ,1
) Vi i (·

If we drop the terms 'Which are purely real--as they won't affect the

stability analysis

2 2
Va - V

(to lowest order)--and employ Eq. (3.3),

2 2 [ 8re! ( L)' 14Ne ~ G(~,v) - ~ 2nR Vi J

(1f~)i b 3 7 m Ri ill 2 2Jf!
o a

we have

(1~.4)

---_._._._----~---~----~-~-----~---
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.... here = h.na/c. Compare this result ~lth ~q. (2.5), ~hich ....as

derived employing ~ake fields. It agrees ~ith the simple analysis

except for the Ilodtt!on rf the local-field term [which had its source

In (;(A,v) for 0 < 8 « 2'If]. For a short bunch the local field is

negllr;lble compareri t.o the residual field from previous turns, and the

analysis of Section II is valid: Th~ motion is stable if and only if V

lies above an integer; namely I < V < I + ! , for any integer I.

[Derivation of this result and further discus_ton may be found in

Section II, fol1o~ing Eq. (2.6).]

In the more general case, where local field~ are important, one

can employ Eq. (ll.ll). If Landau damping is to be considered also, then

one must resort to Eqs. (4.3) and (3.18).

It is interesting to consider the case of a very large accelerator

--that Is, a particle moving down a long straight resistive pipe. Is

it stable or unstable with respect to transverse 06cillations7 To

study this case, we take the limit of Eq. (4.4) as R ~ 00. Introducing

1n place of V, the distance, ~~, that the particle travels during

[ ( '."0)-1 1J ,one transverse oscillation period duration ~ ve observe trillt

V ~ R/~~ - 00. Consequently the local-field term in Eq. (4.4) dominates9

G(~,v) --in agreement with Eq. (A9) of the Appendix which shows that

G(2n,v) consists only of contributions from previous turns. The

remaining term yields 101m V > 0 , and hence the motion is stable. We

may readily pursue the problem further and compute the damping rate,

(
-1

~hlch is a factor of exp[- 1m V)VO ] In each transverse oscillation
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period. From Eq. (4.4), the damping factor per period, f, is:

f
rI -8N

exp 1 1)1( 7
'L '!
(21\)

\

is the classical particle radius, the bunch of2/ 2r O = e mOc

length L has N particles and travels down a resistive tube of

....here

radius b while oscillating with transverse wave length ~~

quantity R-I i9 a akin depth, and Eq. (4.5) 1s valid for

(;.. ~_ -1 •"'~ » L » b» J.

The

B. Many Nonequal Bunches

If the number of particles, N , in the various bunches are
n

unequal, then the set of equations for the ~ (Eq. (3.20)] has non-

degenerate eigenvalues in the limit that W' ~ o. In this case, and

for small W' , the eigenvalues, "'(n) , are given to firat order in

W' only by the diagonal terms of the matrix:

"'(n) N [U' + W' G ], n = 1, ••• M •
n nn (4.6)

The M eigenvalues of Eq. (4.6) are the same as one ....ould obtain for

M independent bunches. Just 86 for one bunch, for many bunches we are

assured of stability if 1m '" < 0 that can be accomplished by choosing

I < V < I + , , for any integer I •

The result obtained is easily understood since for bunches of

unequal number N ,the natural frequency of each bunch 1s different
n

from that of any other bunch. Thu6 most of the influence of one bunch



VCRL-1675l

-17-

on another averages out to a large extent (to be precise, it is removed

from first order), and hence the bunch notion is dominated by the

influence of one bunch upon itself. The natural frequencies of the

bunches are almost equal, however, since the frequency difference is

due only to the effect of image terms. Quantitatively, the bunches

will act independently when the interbunch contribution to the coherent

frequency is small compared with the difference in bunch frequency:

For all m and n IN W' G I « (N - N ) lv' I . Since W'n mn n m

involves the resistivity and V' does not, V' is often much larger

than W' and this condition is satisfied with only modest differences

in the bunch numbers. In the extreme relativistic limit, however, V'

vanishes since the electric and magnetic images tend to cancel.

W' ,»

Dielectric loading and other similar devices can be used to keep

11a8 has been discussed in the literature; for a smoothV'

vacuum tank the criterion for independent bunch motion is, from

»
L

where N is the number of particles in one of the M bunches--each

of length L --and 6N i8 the reqUired difference in number between

bunches. More generally, the requirement on tN for independent

bunch motion is:

» W'
ijT (4.8)
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In the case of independent bunch n~tion, and when V is below

an integer, the motion is unstahle except for Lannau damping. The

extensive discussion of IRS may now be applied, with )..(n) given by

Eq. ()~.6): For Iu'l » IWIG I the threshold particle intensity
nn

for an instability is approximately proportional to U' and almost

independent of W' 0 From Eq 0 (3.2),) it is seen that the threshold

intensi ty depends upon the tightness of bunch! ng fU' <r
-1

L ],

whereas from Eqo (3.23) it is seen that the growth rate (when above

threshold) is independent of the degree of bunching.

C. Equally Spaced Bunches of Equal Intensity

In some circumst8nces--usually for beams of extremely

re lativistic particles--the inequali ties for independent bunch motion

are strongly violated. It is then possible that a different approximation

becomes valid; namely, that all the bunches are sensibly equal in

intensity. The case of equally spaced bunches of equal intensity is

one for which the solution of Eq. (3.20) is immediate.

Taking N = N,n
and 8m = ~ mJN , we observe that Eq. (3.20)

can be written in the form

o ,

where Gmn = G (~ (m-n),v) and G is [from Eqo (3.22)J independentnn

of n 0 Relabelling the sum, we obtain

---~-- - --_._ _--- ~--._.~---~------------~~-- --_.- _._-~----_._-_.._--
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(NUt + NWtG - X,JO + rrw'
nn ~

,
G (2rl'r V') Q

\ M' J ~+r
o

(1~.1O)

in which all the coefficients are independent of n. The matrix is

cyclic and the solution veIl-known. In particular, let

(4.11)

be the mth of the M roots of unity. Then clearly an ~th solution of

the set of equations i8

vith associated eigenvalue:

( 4.12)

~(m) :: NU' + NW'G + MI'nn

}1-1

)
'1"=1

This may be vritten, from Eq. (3.22), in the form:

~(m)
&' L )!

\ 11
G (~r

) -armri/M
:: NU' - MI' 15 ( vi + NW'

~~~
,V e .2n'R

( 4.14)

By Eq. (A18) of the Appendix, the M eigenvalues are

JI
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If we ignore the self-field term then, by Eq. (A~), the

imaginary part is positive when (v + m);'M lies between an integer

and the next lower half-integer, and negativE' in the other half-

interva1. Therefore, if M is even, half the eigenvalues have

positive and half have negative imaginary parts; if M is odd, one

more has a positive imaginary part than a negative one (or vice versa).

The only case where there is no eigenvalue with a positive imaginary

part occurs when there is only one bunch and V lies in the proppr

range.

The self-field term is stabilizing, of course, and could improve

the situation, but it appears unlikely that machine parameters would be

such as to have this term important. Also, finally, Landau damping can

make some (or all) of the modes with Im A > 0 stable.

D. Numerical Calculations

A computer program has been prepared which obtains the eigen-

values and eigenvectors of Eqs. (3.20) [With the second term in

Eq. (3.22) omitted] for given values of the ratio W'JU' and given

distributions of bunch populations N ,and for uniform spacing of the
n

bunches. As is expected, it is found that if W'JU « DN/N and

W'JU' » 6N/N, respectively, the results behave as described in

~;ec8. IV.B and IV.C.

In the intermediate case, for M = 12 bunches and V = 8.85

(correoponding to the Brookhaven Ar~), the rea} parts of the normalized

____._0 _
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eigenvalues are plotted as functions of W'~J' In Fig. J, for the case

that the re]stlve bunch -3populations vary In stepr; of JO from 1.000 to

0.989. The largest value of W'/U' for ....hich all modes have positive

-)~
imaginary parts Is 1.5 • 10 , ....hich just about corresponds to

replacing the inequality in Eq. (ILR) .... Hh an equality. For W'/U'

four times as large, or larger, six modes have negative imaginary parts,

a6 in the limit vhere all bunches are equally populated.

Note that, for W'/U' greater than the "threshold" value

_l~

(1.')'" 10 in this case), the real part of the highest eigenvalue

increo.ses rapidly .... ith W'/U' ....hile the lo....er ones change much less.

Examination of the corresponding eigenvectors discloses that this mane

I sa"collective" mode in vhich all bunches participate in the motion,

with relative phases corresponding to that integral wave number ....hich

ltes closest to V (1n this casc, 9). In all the other modes some of

the bunches participate far less than others, especially for relatively

/U /U
-I~

small W' '. For example, vi th W' '== ') ~. 10 ,the ampJi tudes of

oscillations of the various bunches vnr'.1 from 1.0 to 0.58 in the

"collective" mode, from 1.0 to 0.068 in the next highest mode, and

from 1.0 to 1.3 x 10-5 in the mode vhose eigenvalue has the smallest

real part.

A more detailed study of these regularities lIes beyond the

scope of the present paper and vl11 have to be left to future Investiga-

tions.
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E. Unequal Spacins

For the case where the bunches are not equally spaced, we have

not Gucceeded in deriving any ~neral theorem about the behavior of

the solutions. Numerical studies show that with Just two equally

populated bunches there is always one stable and one unstable mode,

no rratter how close the t'W'O bunches are; when two of many bunches have

the same population there is always at least one stable and one unstable

mode. When there are Just two bunches this property can be shO'W'Tl to

be eqUivalent to the statement that

I 1m G( 21t ,v)j < 11m [G( e, v) G( 2Jt - e, v)]! I ,

a relation which can be inferred for small e from the approximations

(A12) and (A13), but which we have not yet demonstrated for all e.

This result indicates that, with bunches of fintte length,

there will always be unstable modes corresponding to relative motion

within a bunch. We believe, however, that these modes Will, in practice,

be stabilized by Landau damping, as stated in the Introduction.
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APPENDIX

In this Appendix we analyze the Bunch Function G(e,v), which

1s defined by:

G(e,v) 21t.

__-'0_, -1V( 9+21tk)
e

i

(8 + 2ffk)!bd
(A 1)

where k ranges over nonnegative integers, V i8 nonintegral, and

o < e < ~. Outside this range of e, G(8,v) is defined by the

periodic continuation of Eq. (AI). There is evidently no difficulty in

passing to the limit 9'" ~ , and we define G(9,v) by Eq. (AI) also

for 8 = 21f •

1. Alternative representations.

Becauae of the general formula for the Gaussian integral

CD ,
J' e-ay ~ It

= ( - )
-Vy ex

0

\Ie may revrite Eq. (AI) in the fonn

(Re ex :: 0) , (A2)

G(8,V)
-(y+iv)(e+~k) t

e dy/y •

Interchanging summation and integration, we have a convenient integral

representation:

G(8,v)

-(y+iV)8
e

-211(y-.-iV)
1 - e

0<8S21f •
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The sign of the imaginary part of the Bunch Function plays a

crucial role In stability analysis. From Eq. (A4) it 18 clear that,

for e = 21f ,

OJ

1m G(211,V) .- -2 sin 21fV J
o

-2rcvdye'

and from the positive definite character of the integrand, the

1m G(2Y1,V) is negative for I < V < I +! and positive for I - ~ < V < r

for any integer I. Since G is, by definition, periodic, it may be

expanded in a Fourier series

G(e,v)
~oo.

\ -lne
) ~ e

i. __ ,_

n=-co

with

21f
1 J G(8,v) ine de • (A6)

~ 211'
e

0

Using Eq. (A4) we find

CD

1

J
dy

~ 11 (y + i( V - n)]yl

())

1 J dz
'" 71' 2

+ l(V - n)z
-00

(Equation A7 continued)
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(

1 ( - 1/< v - n) j i

n > "

n<v

~ith the sign of the root chosen so as to make the real part of ~

positive in all cases.

Therefore an alternate form for G is

G(8,v)

.co
\
\
/

/
n.,,-oo

(i J
\~ - ,,)

-In8
e (A8)

~Ith the sign of (i/n - v)! chosen so that its real part is positive.

2. Sumn~tion formulas and approximations.

For computational purposes it is convenient to compute the sum

(AI) over a finite number of terms and to estimate the remainder. We

need only carry out the procedure leading to Eq. (A4) with the sum

from k = M to 00 converted to an inter,ral:

a(Q,v)
-iv(Q+2lrm)e

+
d -(Q+2rrM)(y+iY)Y e

! -2n(y+lV)
Y [I-e J

For large M, the integral in Eq. (A9) becomes very small and

may be approximated by an asymptotic formula. Writing

---------_ ...._._-----_ .. __ .._-
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1 1
\()) .

{e-2niV(e-2nY 1) 1t

-21t'(y+1V)
\ (e-21t'iV] I

(1 _ e-21t'iV 11 - e (1 - fer!
(Ala)

we can easily generate such a formula. In particular, the first two

terms yield

•[1 - -2rciV
Jf e

-2JfiV
(l-e He

..,
I

+ 2>lM).J ·

(All)

From Eq. (A9) we can readily obtain limiting values of the

Bunch Function. Thus for a < e ~ 2Jf ,

G(e,v)
~ - i vQ .l. --Oq

21t'~ e + 21t'2 )

T ID;i

-iV( e+21t'm)e

and for e« 21t' we can neglect e in the sum to obtain

for e« 2Jf. (A12)

For e < a G(-IQI,v) -= G(21f - lel,v), and since G(e,v) varies

slowly for e ... 21f , we have:
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8 « 211' •

Numerical valueB
12

of r,(8,V) , obtained employing Eq. (A9),

are ilisplayed in FIRS. 2 and~. Values of the Bunch Function outside

the ranR" nigpl/lypd CAn be ohtaim~rt from the relation

G(e l- ?rrm,V + n)
-ln8

e G(9,v), (A Ih)

Vlllld for all integers m and n, which follows immediately from the

definition of G(8,V) reee Eq. (A8)].

Addition theorem.

We wish to evaluate the sum S defined as

S e - 21fmri,M G( 21fr )M ' V ,

where m,r, and M are integers. Employing the representation of

Eq. (A4), and interchanging the finite summation and the integration

yields

S
dy -21f (( m+v) i+y] rIMe .

(Al6)

Thp summation is 11lDl1ediate and yields
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s

00
dye-2n:[(m+V)1+Y]/M [1 _e- 2lf [(m+V)i+Y]]

y'r 1 _ e - 2lf ( y ~ 1V) ] (1 _ e - 2Jf [ ( m+V ) i +y1,IM )

(A17)

Since exp( -2Jfm) ::- 1 , \Ie have--after replacing yIM \lith ­y--

(A18 )

\lhich, on comparison \lith Eq. (A4), yields S = M; G(~, m~v ) •
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9. In the 11ml ting process we must ohserve the condItion VL/21tR « 1

required to obtain Eq. (3.19). This condition Is satisfied if

T. «

10. The result for rectilinear motion has been obtained in a somewhat

roundabout manner; the reader may welcome the following more

straightforward argument. For a single particle In a straight

pipe the Bunch Function, as defined by Eq. (3.9), becomes modified

in an obvious way; namely, the periodic delta function of Eq. (3.7)

is replaced with an ordinary delta function with the result that

(see Eq. (Af3)]

G(e,v) ... G (e,v)
s.p.

00

J
-00

dk

The Straight Pipe Bunch Function may readily be evaluated by contour

integration with the result

G (S,v)sp

-iV8e e > 0

o Q < 0 •

This is seen to be exactly the same as the m = 0 term in Eq. (A9);

dynamical analysis will consequently lead to a result analogous to

Eq. ('l.I!), but with the term G(2rt',v) absent.

The argument Just given is not, however, immune to criticism: In

tlrlntegration over k there is a range where k 18 near V and
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one of the criteria for valid field expressions, namely m» c2;d2a,

Is not satisfied. One can answer the criticism by replacing the

field expressions of Eq. (3.3) with more gpnera]ly valid expressions,

This is B. verygiven in Ref. 8, and then evaluating G (e,v) .
sp

tedious calculation--which has not. been perf'omed--but, because

the range of InvaHdlty of F:q. ("i.3) is excee rHnp;ly narrow one

pxpects only vcry nmall correctinns to \r (9,'11).
Bp

Note that the deriVAtion given In the horly of the paper is

not subject to criticism, since for any larRe (but not fantastically

large) R, the sum employed in the definition of G(S,V) completely

avoids contributions from the small region where the skin depth

exceeds the vacu~~ chamber wall thickness.

11. A. M. Sessler, In STAC-49, Aug. 19b5 (see Ref. 3), p. 8.

12. M. Allen, M. Lee, and J. Rees, in SLAC-49, Aug. 19b5 (see Ref. 3),

p. 49. We wish to thank these authoro for Bupplying us With the

numerical reSUlts presented here.
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fIGUm: CAPTIONS

Fig. 1. Real parts of the eIgenvalues of the matrix defined by Eq. (3.20)

as a function of W'jU' for M ~ 12 bunches, V::: 8.85, and

bunch populations rangIng from 1.CD to 0.9H9 in steps of 0.001.

The dots are cases in whIch the imaginary part of the eigenvalues

are positive; crosses correspond to negative imaginary parts.

Fig. 2. Values of the real part of the Bunch Function G(e,v) for

o < B < ~ and V::: 0.1, 0.9 (0.2). The function is defined

by Eq. (Al). (See Fig. 2a and Fig. 2b)

Fig. 3. Values of the imaginary part of the Bunch Function G(e,v) for

o < e < ~ and V::: 0.1, 0.9 (0.2). The function is defined
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