Skip to main content
eScholarship
Open Access Publications from the University of California

Probing ferroelectricity by x-ray absorption spectroscopy in molecular crystals

Abstract

We carry out X-ray absorption spectroscopy experiment at the oxygen K edge in croconic acid (C5H2O5) crystal as a prototype of ferroelectric organic molecular solid, whose electric polarization is generated by proton transfer. The experimental spectrum is well reproduced by the electron-hole excitation theory simulations from configuration generated by ab initio molecular dynamics simulation. When inversion symmetry is broken in the ferroelectric state, the hydrogen bonding environment on the two bonded molecules become inequivalent. Such a difference is sensitively probed by the bound excitation in the pre-edge, which is strongly localized on the excited molecules. Our analysis shows that a satellite peak in the pre-edge will emerge at higher excitation energy, which serves as a clear signature of ferroelectricity in the material.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View