Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Functional analysis of three topoisomerases that regulate DNA supercoiling levels in Chlamydia

Published Web Location

https://doi.org/10.1111/mmi.13241
Abstract

Chlamydia is a medically important bacterium that infects eukaryotic cells. Temporal expression of chlamydial genes during the intracellular infection is proposed to be regulated by changes in DNA supercoiling levels. To understand how chlamydial supercoiling levels are regulated, we purified and analyzed three putative Chlamydia trachomatis topoisomerases. As predicted by sequence homology, CT189/190 are the two subunits of DNA gyrase, whereas CT643 is a topoisomerase I. CT660/661 have been predicted to form a second DNA gyrase, but the reconstitute holoenzyme decatenated and relaxed DNA, indicating that the proteins are subunits of topoisomerase IV. Promoter analysis showed that each topoisomerase is transcribed from its own operon by the major chlamydial RNA polymerase. Surprisingly, all three topoisomerase promoters had higher activity from a more supercoiled DNA template. This supercoiling-responsivesness is consistent with negative feedback control of topoisomerase I and topoisomerase IV expression, which is typical of other bacteria. However, activation of the chlamydial gyrase promoter by increased supercoiling is unorthodox compared with the relaxation-induced transcription of gyrase in other bacteria. We present a model in which supercoiling levels during the intracellular chlamydial developmental cycle are regulated by unusual positive feedback control of the gyrase promoter and the temporal expression of three topoisomerases.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View