- Main
Complex Conformational Space of the RNA Polymerase II C-Terminal Domain upon Phosphorylation.
Published Web Location
https://doi.org/10.1021/acs.jpcb.3c02655Abstract
Intrinsically disordered proteins (IDPs) have been closely studied during the past decade due to their importance in many biological processes. The disordered nature of this group of proteins makes it difficult to observe its full span of the conformational space using either experimental or computational studies. In this article, we explored the conformational space of the C-terminal domain (CTD) of RNA polymerase II (Pol II), which is also an intrinsically disordered low complexity domain, using enhanced sampling methods. We provided a detailed conformational analysis of model systems of CTD with different lengths; first with the last 44 residues of the human CTD sequence and finally the CTD model with 2-heptapeptide repeating units. We then investigated the effects of phosphorylation on CTD conformations by performing simulations at different phosphorylated states. We obtained broad conformational spaces in nonphosphorylated CTD models, and phosphorylation has complex effects on the conformations of the CTD. These complex effects depend on the length of the CTD, spacing between the multiple phosphorylation sites, ion coordination, and interactions with the nearby residues.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-