Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Generation of MAC waves by convection in Earth's core

Abstract

Convection in Earth's core is a viable mechanism for generating MAC waves when the top of the core is stably stratified. We quantify the generation mechanism by extending the physical description of MAC waves to include a source term due to buoyancy forces in the convecting part of the core. Solutions for the forced motion are obtained using a Green's function, which is constructed from the eigenfunctions for the unforced motion. When the source term is evaluated using the output of a numerical geodynamo model, the largest excitation occurs at even spherical harmonic degrees, corresponding to waves with symmetric azimuthal flow about the equator. We also find that the magnitude of the source term decreases at periods shorter than about 60 yr. As a result most of the wave generation is confined to waves with periods of 60 yr or longer. Quantitative predictions for the wave amplitudes depend on the projection of the source term into the eigenfunction of the waves. Strong stratification limits the penetration of density anomalies into the stratified layer, which means that the source term is confined to the lowermost part of the layer. Overtones of MAC waves with large amplitudes in the lower part of the stratified layer are more effectively generated by convection, even though these waves are heavily damped by magnetic diffusion. Generation of MAC waves by convection establishes a physical link between observable wave motion and deeper convective processes. Detection of changes in the amplitude and phase of MAC waves would constrain the generation processes and offer insights into the nature of the convection.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View