Skip to main content
Download PDF
- Main
Assessment of Metabolic Flexibility by Means of Measuring Blood Lactate, Fat, and Carbohydrate Oxidation Responses to Exercise in Professional Endurance Athletes and Less-Fit Individuals
Published Web Location
https://doi.org/10.1007/s40279-017-0751-xAbstract
Background
Increased muscle mitochondrial mass is characteristic of elite professional endurance athletes (PAs), whereas increased blood lactate levels (lactatemia) at the same absolute submaximal exercise intensities and decreased mitochondrial oxidative capacity are characteristics of individuals with low aerobic power. In contrast to PAs, patients with metabolic syndrome (MtS) are characterized by a decreased capacity to oxidize lipids and by early transition from fat to carbohydrate oxidation (FATox/CHOox), as well as elevated blood lactate concentration [La-] as exercise power output (PO) increases, a condition termed 'metabolic inflexibility'.Objective
The aim of this study was to assess metabolic flexibility across populations with different metabolic characteristics.Methods
We used indirect calorimetry and [La-] measurements to study the metabolic responses to exercise in PAs, moderately active individuals (MAs), and MtS individuals.Results
FATox was significantly higher in PAs than MAs and patients with MtS (p < 0.01), while [La-] was significantly lower in PAs compared with MAs and patients with MtS. FATox and [La-] were inversely correlated in all three groups (PA: r = -0.97, p < 0.01; MA: r = -0.98, p < 0.01; MtS: r = -0.92, p < 0.01). The correlation between FATox and [La-] for all data points corresponding to all populations studied was r = -0.76 (p < 0.01).Conclusions
Blood lactate accumulation is negatively correlated with FATox and positively correlated with CHOox during exercise across populations with widely ranging metabolic capabilities. Because both lactate and fatty acids are mitochondrial substrates, we believe that measurements of [La-] and FATox rate during exercise provide an indirect method to assess metabolic flexibility and oxidative capacity across individuals of widely different metabolic capabilities.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%