Skip to main content
eScholarship
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

A neural network-evolutionary computational framework for remaining useful life estimation of mechanical systems

Abstract

This paper presents a framework for estimating the remaining useful life (RUL) of mechanical systems. The framework consists of a multi-layer perceptron and an evolutionary algorithm for optimizing the data-related parameters. The framework makes use of a strided time window along with a piecewise linear model to estimate the RUL for each mechanical component. Tuning the data-related parameters in the optimization framework allows for the use of simple models, e.g. neural networks with few hidden layers and few neurons at each layer, which may be deployed in environments with limited resources such as embedded systems. The proposed method is evaluated on the publicly available C-MAPSS dataset. The accuracy of the proposed method is compared against other state-of-the art methods in the literature. The proposed method is shown to perform better than the compared methods while making use of a compact model.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View