- Main
Radial Basis Leaky Competing Accumulator Model: A Biologically Plausible Framework for Decision-Making in a Continuous Option Space
Abstract
In many real-life situations, we make decisions between a defined set of options, which can be either discrete (as when deciding between going on driving and stopping the car) or continuous (as when stirring the wheel, the possible range of angles goes from $-30$ to $30$ degrees). However, most computational models for decision-making focus on decisions between a discrete set of options. While there are a few sequential sampling models that can explain behavioral patterns (i.e., choices and response times) of decisions in a continuous option space (i.e., the CDM and the SCDM), these models have a few limitations. For example, these models assume no leakage in the evidence accumulation process and no spatial inhibition (i.e., inhibition among different areas of the option space depending on their distance to each other). In this paper, we propose a novel sequential sampling model based on an existing computational model (i.e., the leaky competing accumulator model) for decisions in a continuous option space. Our proposed model includes leakage and spatial inhibition and is thus more biologically plausible.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-