Modeling the forest dynamics of the Sierra Nevada under climate change using SORTIE-ND
Skip to main content
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

Modeling the forest dynamics of the Sierra Nevada under climate change using SORTIE-ND

  • Author(s): Moran, Emily V;
  • Vannest, Nikole;
  • Aubry-Kientz, Melaine
  • et al.

Published Web Location
No data is associated with this publication.

Abstract Key message Model simulation results suggest that forests in the Sierra Nevada mountains of California will tend to increase in density and basal area in the absence of fire over the next century, and that climate change will favor increases in drought-tolerant species. Context Climate change is projected to intensify the natural summer drought period for Mediterranean-climate forests. Such changes may increase tree mortality, change species interactions and composition, and impact ecosystem services. Aims To parameterize SORTIE-ND, an individual-based, spatially explicit forest model, for forests in the Sierra Nevada, and to model forest responses to climate change. Methods We use 3 downscaled GCM projections (RCP 8.5) to project forest dynamics for 7 sites at different elevations. Results Basal area and stem density tended to increase in the absence of fire. Climate change effects differed by species, with more drought-tolerant species such as Jeffrey pine (Pinus jeffreyi A.Murray bis) and black oak (Quercus kelloggii Newb.) exhibiting increases in basal area and/or density. Conclusion Increasing forest density may favor carbon sequestration but could increase the risk of high-severity fires. Future analyses should include improved parameterization of reproduction and interactions of disturbance with climate effects.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item