Skip to main content
Download PDF
- Main
Application of Recurrent Neural Networks In Toxic Comment Classification
- Li, Siyuan
- Advisor(s): Wu, Yingnian
Abstract
Moderators of online discussion forums often struggle with controlling extremist comments on their platforms. To help provide an efficient and accurate tool to detect online toxicity, we apply word2vec's Skip-Gram embedding vectors, Recurrent Neural Network models like Bidirectional Long Short-term Memory to tackle a toxic comment classification problem with a labeled dataset from Wikipedia Talk Page. We explore different pre-trained embedding vectors from larger corpora. We also assess the class imbalance issues associated with the dataset by employing sampling techniques and penalizing loss. Models we applied yield high overall accuracy with relatively low cost.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%