- Main
X‑ray Absorption Spectroscopic Characterization of the Synthesis Process: Revealing the Interactions in Cetyltrimethylammonium Bromide-Modified Sulfur–Graphene Oxide Nanocomposites
Published Web Location
https://doi.org/10.1021/acs.jpcc.6b00751Abstract
We have investigated the chemical bonding interaction of S in a CTAB (cetyltrimethylammonium bromide, CH3(CH2)15N+(CH3)3Br-)-modified sulfur-graphene oxide (S-GO) nanocomposite used as the cathode material for Li/S cells by S K-edge X-ray absorption spectroscopy (XAS). The results show that the introduction of CTAB to the S-GO nanocomposite and changes in the synthesis recipe including alteration of the S precursor ratios and the sequence of mixing ingredients lead to the formation of different S species. CTAB modifies the cathode materials through bonding with Na2Sx in the precursor solution, which is subsequently converted to C-S bonds during the heat treatment at 155 °C. Moreover, GO bonds with CTAB and acts as the nucleation center for S precipitation. All these interactions among S, CTAB, and GO help to immobilize the sulfur in the cathode and may be responsible for the enhanced cell cycle life of CTAB-S-GO nanocomposite-based Li/S cells.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-