Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

The Physics of Spin-Transfer Torque Switching in Magnetic Tunneling Junctions in Sub-10 nm Size Range

Abstract

The spin-transfer torque magnetic tunneling junction (MTJ) technology may pave a way to a universal memory paradigm. MTJ devices with perpendicular magnetic anisotropy have the potential to have high thermal stability, high tunneling magnetoresistance, and low critical current for energy-efficient current-induced magnetization switching. Using devices fabricated through focused ion beam etching with Ga-and Ne-ion beams, this paper aimed to understand the size dependence of the current/voltage characteristics in the sub-10 nm range. The switching current density drastically dropped around 1 MA/cm2 as the device size was reduced below 10 nm. A stability of over 22 kT measured for a 5 nm device indicated a significantly reduced spin relaxation time.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View