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Abstract. Despite its application in many fields, map matching in studies of travel/transport 

geography is unique in two aspects: 1) The correct road links traversed by the traveler need 

to be unambiguously identified; 2) All the identified links should form a meaningful travel 

route. This paper discusses the application of map matching methodologies in the context 

of deriving people’s travel behavior from GPS-traced multi-modal trip data. In recognition 

of the disadvantages associated with the existing algorithms, this research proposed and 

implemented a heterogeneous map matching approach suitable for travel/activity research 

needs which is uniquely characterized by: 1) data preprocessing with point cluster 

reduction and density leverage; 2) offering the candidate solution within a pool of “the 

best”; 3) the balancing of matching results from multiple matching factors with rank 

aggregation; 4) Utilizing the network constraint attributes to increase the matching 

accuracy; and 5) Use of the Dempster belief test to discern the noise and off-road travel.  
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1 Introduction 

 

Map matching is defined as the process of correlating two sets of geographical positional information (e.g., 

GPS records of object positioning versus digital road networks from different vendors). Data types handled by 

map matching include point-to-line, line-to-line (Xiong, 2000) and polyline to polyline matching. Based on 

the temporal-response characteristics, map matching algorithms can also be roughly classified into online 

map-matching and off-line map-matching. Online map-matching methods snap the device-captured geo-

spatial feature position to the base reference in real-time. Offline map-matching counterparts post-snap the 

point data/linear data after the whole set of data is collected (Yin and Ouri, 2004). 

 

This paper discusses the map matching methods in the context of travel/transportation studies. Map 

matching is used as a means to transfer the road network attributes to the resulting travel route in order to 

derive certain travel behavior, and, hence, further analysis can be conducted based on the inferred information. 

Matching GPS recorded points to the correct position on the correct road link is secondary compared to 

obtaining the topologically correct travel route and the associated attributes/statistics. The paper is organized 

as follows: Section 2 briefly overviews the currently available map matching methods. Section 3 delves into 

the unique requirements for map matching algorithms in travel/transportation studies and describes an 

innovative three-step heterogeneous map matching methodology. Finally, section 4 presents conclusions and 

discusses future research on the proposed map-matching method and its application in travel/transportation 

studies. 

 

 



2 Overview of Map Matching Methods 

 

2.1 Applications and Conceptual Formulation 

 

Map matching has widespread applications, including automatic vehicle navigation (Syed & Cannon, 2004), 

image processing, network data conflation (Xiong, 2002), and travel/activity surveys (Lexington Travel 

Survey, 1997). The common procedure for map matching is to establish the correspondence relationship 

between two sets of spatial features. Spatial information and attributes contained in the different spatial data 

sets are conflated into one of the spatial data sets via a matching operation, or are processed further to 

generate a new data set.  The process of map matching helps researchers extract the characteristics of matched 

features from one data set and transfer/update the associated spatial/non-spatial information to/on the other 

data set. In this paper, we will focus on the research question of how to accurately match GPS-captured 

positional data onto linear data (road network).   

 

 

2.2 Evolution of Map Matching Factors 

 

A straightforward solution to the map-matching problem, as mentioned by White and his colleagues (2000), is 

to snap the GPS recorded location to the nearest road link node or road link. The simple solution, however, 

only generates perfect matching results in the ideal situation. Typically, due to the dual uncertainty and 

inaccuracy involved in both the point and network data, matching GPS recorded point data to road link nodes 

or to a road link itself is extremely prone to errors. The situation is exacerbated when only distance measures 

are used for guiding the matching process due to the potential map-matching zone overlay (Lakakis et al. 

2004). Point to point matching (matching GPS points to road link nodes) could easily fall into the pitfall of 

matching to the wrong node on the wrong link if the correct and wrong links are close by in parallel and the 

correct link does not contain as many pseudo-nodes as the wrong one. Point to curve matching, (matching 

GPS points to road link arcs), on the other hand, suffers from ambiguity issues when the GPS point is close to 

a road intersection (Bernstein and Kornhauser, 1996, 1998; White et al. 2000).  

 

Notice that a distance measure would only constrain a spatial feature along one dimension. An additional 

measure - travel direction - naturally became the candidate to add on as the second dimension to quantify the 

relationship between GPS points and the matching road network. Unsurprisingly it ends up improving the 

matching accuracy dramatically (White et al. 2000). However, travel direction derived simply from GPS 

points could be very unreliable, especially when the carrier of the GPS receiver travels at a low speed or 

makes brief stops along the travel routes. In either case, GPS signal drifts exert unpredictable effects on the 

GPS-derived travel directions. This has forced many researchers to rely on gyroscope or digital compass as 

the second data source.  These devices generally can provide accurate heading and heading change 

information at various travel speeds (Quddus et al., 2003; Syed and Cannon, 2004).       

 

As more research efforts are devoted to searching better map-matching methods, other measurements have 

been incorporated to provide better selection criteria for deciding the best match from the neighboring 

candidate link set. The decision space for matched road link selection, hence, was expanded to a multi-



dimensional level. For example, besides proximity and heading difference, Quddus et al. (2003) have used 

two additional measures for road link selection -- “GPS position relative to the road link” and “intersection 

relation between the GPS trace and the road links”; Syed and Cannon (2004) have used the “average distance 

traveled on current link” and “large distance traveled on current road link”. In addition, if the base road 

network contains detailed road attributes (speed limits, one way lanes, etc.) that potentially restrict a certain 

routing behavior, they can be utilized to further filter unqualified road links (Najjar and Bonnifait, 2003; 

Taylor et al. 2001).  

 

Intuitively, taking more factors into consideration helps avoid matching errors that easily result from 

measurements from a single perspective. Nevertheless, different select criteria could also result in conflicting 

matching conclusions and therefore cause more confusion. To overcome the difficulty, two approaches have 

been taken to fuse the multi-dimensional selection criteria and reduce them to facilitate the deterministic 

matching decision.  The one that is commonly used is to simply combine the selection factor with a weighting 

scheme. The weighting factors are typically derived empirically from data testing (Quddus et al. 2003) or 

from adaptive-fuzzy-network-based training (Kim and Kim, 2001). The second approach is complicated 

enough to use Bayesian Belief Theory and Dempster-Shafter’s rule for deriving the unique non-ambiguous 

selection.  

 

 

2.3 Improvement with Topological Information 

 

With meticulous calibration of selection criteria, map-matching algorithms are sufficient to identify a series of 

the matched road segments from the pool of candidate links. However, this does not necessarily imply the 

matching result would be meaningful in terms of truthfully reflecting a traced travel route. A matching result 

could show up simply as a group of disconnected “paths”.  

 

Notice that both point-to-point and point-to-curve matching approaches do not reflect the fact that GPS 

records indeed represent the travel routes of the carriers but that they only constitute a small sample of the 

route. Bernstein and Kornhauser (1996) and White et al. (2000) have suggested connecting the GPS points in 

sequence to form piece-wise linear curves, which are further matched against road network. The method is 

called curve-to-curve matching. The matched curve, consisting of road links that are selected from the base 

road network, should have the smallest L2 norm distance to the GPS trace or be viewed as the approximate 

variation of GPS trace after a small amount of translation and rotation. Techniques have been borrowed from 

the pattern recognition field that utilizes similar measures to evaluate the shape proximity between two 

geometrical figures. One of the good examples is Joshi (2001)’s application of a rotational variation metric to 

measure the shape similarity between vehicle trajectory and the possible travel paths. 

     

On the other hand, there are many other researchers who chose to further improve point-to-point matching 

or point-to-curve matching. As suggested by Bernstein and Kornhauser (1996, 1998), tested by White et al. 

(2000), and included in other researchers’ work (Quddus et al., 2003; Syed and Cannon, 2004), road network 

topology information has been incorporated into the matching algorithm to maintain the topological integrity 

of map matching results and prevent the error of matching points to the wrong road link. The underpinning 

rational is simple: if, at time t, a road link is selected without ambiguity; at time t+1, the selected road link 

would most probably remain as the ideal matching candidate; or the end of the current road link has been 

reached, and, hence, a road link that is connected to it becomes the next candidate.  Therefore, the topology 



relations (especially, connectivity) among road links restrain the search for the next matching candidate. 

Unreachable road links from the current match in one GPS epoch thus would be easily eliminated from the 

candidate link set with confidence. However, the effectiveness of the approach depends greatly on the extent 

to which we can trust the previous match.  A tiny bad match could consequentially lead to a matching blunder 

as the GPS epoch progresses, as commonly seen in the pure geometry- based matching algorithms (Quddus et 

al., 2003).  It is not an easy task to clearly dichotomize the confidence/trust domain with a deterministic 

threshold setting. 

 

As a solution to the problem, Pyo et al. (2001) and, later, Marchal et al. (2004) increased the number of 

testing epochs for determining the best “continuing” road link from the currently matched one. Their 

algorithms keep multiple possible “continuing” road links and the corresponding accumulated “fitness” values 

in a hypothesis space over a period of GPS epochs. The fitness measurements that grew smaller than a 

threshold over time will get pruned. Finally, a road link hypothesis is confirmed as the map matching result 

either if its fitness score is the highest or the ratio of its score to the next highest one exceeds a certain 

threshold. Note that there is no single definition for such fitness measures. Marchal et al. (2004) used the 

aggregated proximity measure between the GPS points and road links, while Pyo et al. (2001) used the 

recursive conditional probability formulation that was comprised of multiple measurements -- projected 

position, link direction, link connectivity, road facility, etc. Both approaches seem to perform adequately in 

empirical tests.  

 

 

2.4 Statistical-Estimate-Based Map Matching 

 

Distinctive from geometry and topology-based map-matching methods, current trends in map matching 

development have begun to incorporate more probabilistic and fuzzy elements. These constituents are more 

tolerant of the uncertainty, partial truth, and approximation involved in map matching processes. Taylor and 

Blewitt (2000) took a unique but innovative approach by simulating the working mechanism of differential 

GPS. Their algorithm, called road reduction filtering, defines a pool of virtual GPS “Ref” positions by 

projecting the “Raw” GPS point to the nearby road links. These “Ref” positions are used as virtual differential 

corrections for the next “Raw” GPS points and, in turn, to generate another pool of “Ref” positions. 

Conceivably, the correct matching position on the road link must be among the “Ref” positions. Based on the 

fact that bearing and distance measures between successive “Raw” GPS points and those between successive 

“Ref” positions are highly correlated, any false series of “Ref” positions can be filtered out. In essence, the 

road reduction filter is still mostly geometry/shape based. But, among the few first attempts, statistical 

rationale (i.e., correlation measurement) for the first time was introduced into the efforts of searching for a 

better map matching solution.  In the mean time, Lakakis (2000) attempted the approach using linear 

regression analysis to fit GPS points to the road centerlines. Parameter significance tests serve to verify the 

linear relationship between GPS latitude and longitude coordinates. The fitted lines work as predictors for 

map matching GPS points to the base road network. This method, however, puts higher demands on GPS data 

accuracy. For stand-alone GPS data, there is a great possibility that map matching zones for two one-way 

parallel roads overlay each other. Walter and Fritsch (1999) viewed the map matching problem as equivalent 

to transmitting information through a communication channel. The ultimate aim of the map matching 

procedure, therefore, becomes minimizing the amount of information loss during the transmission or 

maximizing the mutual information shared between data sets. The method does not require any tuning 



parameters except a statistical investigation on the evaluation of the conditional probability involved in the 

mutual information formulation. 

 

2.5 Data Enhancement Efforts 

  

Apart from continuously refining the map matching procedures and techniques, other efforts have been made 

to improve map matching accuracy from the perspective of data preparation and compilation, either by 

increasing the accuracy of the localization estimates or by matching these estimates against a high-accuracy 

digital map.  For an application that involves a larger and more stable carrying platform, data input for map 

matching typically incorporates simple GPS recorded point data with other data sources, such as from a digital 

elevation model, digital compass, gyroscope, velocity sensors or Antilock Brake System (ABS), etc. For other 

applications that allow post-processing in travel or transport-related studies, usually only the GPS point data 

serves as the input data source. While GPS recorded points comprise the single data source, a Kalman filter 
typically is executed to estimate the bias associated with a previous map-matching epoch. Then the estimation 

can be used to compensate the next GPS positioning input. In the situation where a GPS receiver is 

complemented and integrated with other data sources, a centralized Kalman filter (Extended Kalman Filter- 

EKF) has been used to incorporate the measurements from all data sources and generate a single stream of 

complex position estimates (Bétaille and Bonnifait, 2000). To further eliminate the errors and biases 

generated from the sensors, these EKF methods usually also build the geometrical shape of the platform into 

the data fusion model. The seminal localization approach has the ability to collect solid measurements even 

when the GPS signals are cut off by the obstruction of the surrounding environment. The multi-data source 

combination method is superior in that it handles both of the disadvantages associated with the individual 

Dead Reckoning (DR) or GPS localization methods by allowing them to complement each other within an 

integrative measurement framework (Bonnifait et al., 2001).  

 

Compared to the rapid advances of positioning technology, improving map accuracy is more of a long-

term, energy-consuming task. Digital maps usually either contain errors or do not possess enough resolution 

power for some of the map matching applications. Although the current commercial digital maps already have 

sufficient coverage over the road networks in most metropolitan areas and even most parts of rural regions, 

mapping accuracy typically varies dramatically, and the map details have not been able to extend to the details 

of lanes and cover particular types of roads such as bike paths or sidewalks. The map resolution problem 

could be partially resolved by one of two ways. For simplified two-lane road representation (generalized as 

single road centerlines), Marchal et al. (2004) have replaced them with two oriented links derived by adding 

small shifts perpendicular to the link centerline. Therefore, the distance between GPS record and the road 

segment can be enhanced as the distance from the point to the augmented road links. The method reverses the 

map generalization process to generate more road link details. But it does require that the network attribute 

table contain the “number of lanes” details. Rogers (2000) attempted to address the problem by using the 

repetitive differential GPS (DGPS) measurements from a probe vehicle to augment commercial digital maps 

down to the drive lane levels. His approach is partially successful, but still suffers higher errors around road 

intersection and in cases where GPS signals are subject to multi-path effects.  

 

 



3 A Heterogeneous Map Matching Approach for Travel/Transport Studies 

 

Different from its application in other fields, the map matching in travel/transportation studies aims at: 1) 

identifying the correct road links traversed by the traveler; and 2) ensuring that the identified links form a 

meaningful travel route. Its main focus is to correctly transfer the road network attributes data to the GPS 

recorded travel route, hence further identifying how the spatial features (road, locations visited, function area 

traversed, etc.) interacted with the traveler during the behavioral process. Ideally, map-matching methodology 

should be able to help answer queries beyond the direct matching result, i.e., road type distribution along the 

travel route or delays encountered. Generally speaking, it is impossible to answer these queries if the travelers 

are off-road, or if the travel roads are not shown on the map. Thus, map matching in travel/transportation 

studies not only calls for accurate road network maps, but also takes into account the fact that the travel is not 

necessarily restrained to roads that facilitate a vehicle’s travel and that the travel might include pedestrian 

walks and bicycle journeys. 

 

In this research, three recent map-matching algorithms were empirically evaluated for travel route 

derivation from GPS point data and their performance is tested against the GPS data that were collected in a 

travel survey. The three map-matching algorithms are: weight-based map matching by Yin and Wolfson 

(2004), fuzzy-logic based map matching by Syed and Cannon(2004) and General map matching by Quddus et 

al (2003). They were implemented in the ARCVIEW network analysis module and the evaluation is 

conducted from multiple perspectives – data needs, selection factors, matching accuracy, and time complexity. 

 

The empirical testing revealed several facts about these map matching algorithms and has inspired us on 

how to adapt them or how to design our own in order to solve the matching problem in travel/transportation 

studies. 

  

• Online map matching algorithms typically ignore or can not use the global information contained in the 

data. Occasionally a GPS position can be matched to a branching or disconnecting road link (Figure 1). 

Problems arose when the recorded GPS points are sparse due to fast travel speed by the carrier - a short 

road link could be ignored and unmatched (Figure 2).  

• In traditional GIS digital maps, nodes are not always digitized at street intersections and their density 

varies across the map. The position of a node plays an important role in the node-to-curve based map 

matching algorithms. If insufficient attention is paid to maintain the consistent topology of matching 

results, one minor mismatch could lead to a blunder (broken links or gaps). 

• Offline algorithm could use global optimization techniques such as the shortest path algorithm to generate 

a topologically correct route. However, the assumption that no road links have ever been repetitively 

visited deprives its ability to differentiate the travel loops.  

• Both types of algorithms could utilize the fact that travelers constrain their travel within the attributed road 

network. Thus, the particular regulations about the road links (speed limits, one-way streets, etc.) could be 

used to help enhance map-matching accuracy. 

  

 

 
[Insert Figure 1 about here]  
[Insert Figure 2 about here] 

 

 



With these rationales in mind, we determined to take a heterogeneous approach for map-matching 

travel/transportation data. The targeted data input source for the algorithm is limited to GPS records. The 

algorithm consists of three phases: data preprocessing, multiple hypothesis map matching with rank 

aggregation and Dempster belief test.  

 

3.1 Data Preprocessing – Cluster Reduction and Density Leverage 

 

The new algorithm adds a data preprocessing step prior to the real map matching work. It consists of two 

steps: cluster reduction and density leverage.  

 

Cluster reduction is meant to reduce the systematic noise in the data. Usually it is not easy to qualify the 

moving/still state solely based GPS receiver’s input, especially when a tracking device is used to collect travel 

data across the full spectrum of travel modes. Even when the carrier keeps still at a fixed location, a GPS 

device would record a cluster of positions indicating random deviations around the true position point, which 

phantoms the slow moving speed of the carrier and random travel directions. Due to their unpredictability and 

falsifying characteristics, the GPS point clusters could be extremely misleading to map-matching procedures 

and are the greatest cause of overshoots and mismatch. With the spatial clustering modeling technique, the 

GPS collected travel data are filtered first to substitute the point clusters with their centroids. To model and 

identify these clusters, we selected the DBSCAN (Ester et al., 1996) clustering algorithm for cluster searching 

since it allows lack of information on the number and shape of the clusters in the input data. 

  

Density leverage is meant to dynamically adjust the data sampling frequency against the model resolution 

of the base street map. The matching street layer consists of various lengths of street links. Similarly, the 

sampling interval of the GPS receiver varies with the carrier’s moving speed and direction. Whenever the 

sampling interval is greater than the length of a traversed street link, there might be the chance that the street 

link is omitted from the matching algorithm, resulting in gaps in the match result. After the cluster reduction 

handling, the GPS trace data is streamlined in units of two. Every two GPS points are processed to generate a 

combined buffer area around them. If the sample distance between the two points is greater than half of the 

minimum-length street link that falls in the buffer, additional false data points are interpolated and inserted 

into the trace sequence.   

 

3.2 Multiple-Hypothesis Matching Algorithm with Rank Aggregation 

 

Borrowing the concept from the genetic algorithm, the map matching method we propose and implement 

keeps a pool of the best solutions. The solution pool is updated sequentially with the ordinal encountering of 

street intersections along the travel route. The GPS recorded travel trace is treated as a translated and rotated 

version of the match route. During the search for the best candidates, both the accumulated 2-norm distance 

(A2ND) and the rotational variation metric (RVM) (Joshi, 2001) are used to evaluate the matching result and 

guide the search directions around street connections.  Norms constitute a quantitative measure of the 

geometric displacement between the GPS trace and the actual travel route. RVM, which accumulates the 

degree of variance between the orientations of two geometric shapes, measures the geometric distortion 

between them.    

 



The algorithm starts with creating a pool of (N) seed candidates by buffering around the first valid GPS 

record. Any street segment that falls within the buffer is selected as one of the potential matches of the travel 

route start. Continuing with the next temporally adjacent GPS trace point, the norm distance between the GPS 

points and its projection on the current match link is computed and accumulated into A2ND as the match 

score of the current match candidate. In the mean time, a direction discrepancy between the current travel 

direction as indicated by the GPS records and the current match link is computed and accumulated to RVM 

metric. A2ND and RVM both serve to guide the match search in the street network space. However, we did 

not try to multiplex them to produce a single matching index, as a fixed or dynamic weighting schema are 

difficult to specify and unlikely to suit every possible individual tracing case. The partial match results are 

ranked in A2ND and RVM separately. Only the top N results of both are kept for the next round of match 

growth.    

  

As the partial match results growth encounters a street intersection, a ground rule is set up to decide the 

right timing of when to select the next link to further the matching process. Two cases exist to judge when the 

traveler began to leave the current link and transit to the next one: 1) The projection of current GPS point falls 

on or out of the end point of the current link, which typically occurs when the travel direction change is less 

than or equal to 90 degrees; 2) The projection of the current GPS point comes near to the end point of the 

current link, but the point’s position is getting away from the current link, which typically occurs when the 

travel direction change exceeds 90 degrees. For the second case, we set up two threshold values to switch on 

the turning signal -20 meters for coming near to the end point of a link and 30 meters for leaving the current 

link. When determining the next link, all the topologically connected links to the intersection node are 

considered as the potential next links, including the incurrent link to cover the U-turn situation. However, 

prohibited maneuver and turn restrictions information has been used to pre-eliminate certain search branches 

efficiently. 

  

After the matching process is completed, a pool of top N match results is derived with different rankings 

of A2ND and RVM measures. With the rank aggregation method, we may combine the ranking of the two to 

obtain an aggregated ordering. Ideally, Kemeny ordering minimizes the sum of the “bubble sort” distances 

and thus generates the best compromise ranking. However, it is a NP-hard problem (Dwork et al., 2001). Here, 

we implemented two of the other heuristic/sub-optimal ranking aggregation methods to composite the 

ultimate matching results (Table 1):  1) the simple Borda’s method to generate a combined ranking for the 

pool of match results: Each candidate in the pool is assigned a score of the number of candidate ranked blow 

it. Its total score across the different ranking list is finally sorted in a descending order; and 2) a good 

approximation to Kemeny optimized rank aggregation – footrule optimal aggregation, which finds the median 

permutation of the rank lists to be combined.  

 
[Insert Table 1 about here] 

3.3 Dempster Belief Test for Travel Off-Road/Noise Discernment  

 

As discussed in the previous sections, uncertainties typically exist in both the trace data and the base matching 

street map. Given the dataset and the matching base, match results are considered as always producible 

without setting any restraint on the acceptable belief and plausibility level. However, considering the possible 

travel by walk mode, a matching algorithm could easily map a pedestrian travel onto a highway link nearby. 

Or under other scenarios, the GPS device could be “blacked out” by the surrounding tall buildings. In either 

case, the assumption that a candidate match link is identifiable from the base street map becomes void.  



 

This research takes the advantage of Dempter-Shafter theory (Shafer, 1976) to fuse heterogeneous 

information in order to discern the off-road travel and GPS black-out situations. For each of the matching 

select criterion (proximity and direction), a frame of discernment {yes, no, perhaps} and its belief assignment 

functions as similar to Najjar and Bonnifait’s (2002) was built to test if a matching link is a “good match”.  

Each discernment type of a select criterion is associated with two quantities: belief and plausibility. The GPS 

trace point match to a link is considered invalid if the no belief value is greater than the plausibility values of 

the other two assumptions, the no belief value is 1, or the conflict parameter has a value of 1.  A consecutive 

trace of more than 10 invalid GPS point-to-link match invalidates the corresponding segment of match results, 

which is then splinted out and replaced with the original GPS travel trace.     

 

3.4 Match Results  

 

Map matching is performed against the Dynamap/transportation data of Santa Barbara from GDT, Inc. It 

contains complete address information and routing features, including speed limit, cost, turn restrictions, one-

way street information, etc. The travel data comes from a travel survey conducted locally. A test run of the 

algorithm against a single GPS trace generates the following results: Figure 3 and figure 4 show data 

processing effects of cluster reduction and density leverage, respectively. Figure 5 show the best match result 

from the match candidate pool as indicated by both the Borda and Footrule ranking aggregation methods. The 

second best match result as indicated from the Borda method indicates an additional matching link at the end 

of travel route, while the second best match result as indicated by the Footrule method indicates an alternative 

matching link at the end of a travel route. They show up with the minimal difference from the best, except the 

divergence at the end of the identified travel route. Table 2 shows the part of Dempster belief test result for 

the test route. The final part of the travel is discerned as the part of off-road travel and replaced with the 

original GPS data. In all, the algorithm generated a perfect match for the GPS trace input, without branch or 

gap in between, and segmented out the off-road travel portion with high accuracy (Figure 6).  

 
 
[Insert Figure 3 about here]  

[Insert Figure 4 about here]  
[Insert Figure 5 about here]  

[Insert Table 2 about here] 
[Insert Figure 6 about here]  

   

  

To fully test the effectiveness of the matching method, the algorithm is used to match a series of travel 

traces collected from a travel behavior survey against the local base map of the Santa Barbara. The matching 

percentage is derived according to the following equation: 100 * (1- ED/n). Here n is the total number of arcs 

in the actual route. The difference between the actual travel route and the final match result is evaluated based 

on the concept of “edit distance” (ED) – the minimum number of insertions, deletions and substitutions 

needed to transform one route to another. On average the map matching algorithm reaches a matching 

accuracy of 95.74%. The further break-down of matching results by travel mode is shown in Table 3. It can be 

seen that travels by bicycle are subject to the most map matching errors, which are mainly due to the lack of 

bike path information in the base map. 

 
[Insert Table 3 about here] 



 

 

Considering the performance of the algorithm, suppose the number of the road links in the road network is 

N, the number of the road link extremities is V, the number of collected GPS points is M, and the size of the 

candidate Pool is K. The time complexity for the DBSCAN algorithm would be O(M * log(M)) with R-tree 

implementation. Density leverage involves a spatial buffering operation, and, hence, is the most costly. Its 

time complexity is up to O(M * log(N) ). The map matching step involves O(M *  K) for candidate searching, 

and O(K* log(k)) for pool updating at each step. Its total complexity is O(M * K
2
 * log(K)). The Dempster 

belief test at the end incurs an additional O(M) time cost. When K is small and N/M is large, the time 

complexity of the algorithm is comparable to most of the algorithms we discussed in section 3.   

 

 

4 Conclusion 

 

In this paper, we briefly overviewed the currently available map matching methods. Several recent 

online/offline map matching algorithms were implemented in GIS to provide a case study to evaluate from 

multiple perspectives. In recognition of the disadvantages associated with the methods examined, this research 

proposed and implemented an innovative map matching approach suitable for travel/activity research needs 

which is uniquely characterized by: 1) data preprocessing with point cluster reduction and density leverage, 2) 

offering the candidate solution within a pool of “the best,” 3) balancing of matching results from multiple 

matching factors with rank aggregation, 4) intelligently utilizing the basic network constraint attributes with 

“expert rules” to increase the matching accuracy, and 5) Dempster belief test to discern the noise and off-road 

travel.  Our analysis has shown that the performance of the new algorithm is comparable with the others when 

the candidate pool size is small and network/GPS trace size is large. An application of the matching algorithm 

to a complete set of travel routes collected from a travel behavior study has shown acceptable matching 

accuracy across the different travel modes. 
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Figure 1 Overshoot scenario 

 

 

 

 

 

 

 

 

 

 



 

Figure 2 Gap scenario 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 3 A cluster of GPS points recorded around street intersection is recovered via DBSCAN algorithm and replaced with its 

centroid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 4 Original GPS trace (as indicated by the triangle symbols) didn’t sample the short street intersection. Augmented traces 

by density leverage added three false GPS data points to cover it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 5 The best match result from both Borda and Footrule ranking aggregation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 6 Map matching result after Dempter belief test with multi-criterion fusion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 1 Match Result Summary (including L2norm and RVM measures, rankings, ranking results from Borda and Footrule 

ranking methods, map matching trip distance and final trip distance after Dempster belief test.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2 Portion of the Dempster fusion result for the test travel route (PI = Plausibility) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Table 3 Map Matching Accuracy by Travel Modes 

Travel Mode 

Total Number of 

Trips Average Matching Accuracy (in percentage) 

Walk 104 94.75 

Car 234 97.04 

Bicycle 61 91.19 

Carpool 34 97.17 

Vanpool 3 100.00 

Local bus 45 96.17 

Total 481 95.75 

 

 




