Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem

Published Web Location

https://doi.org/10.1038/376690a0Creative Commons 'BY' version 4.0 license
Abstract

Potassium channels catalyse the permeation of K+ ions across cellular membranes and are identified by a common structural motif, a highly conserved signature sequence of eight amino acids in the P domain of each channel's pore-forming alpha-subunit. Here we describe a novel K+ channel (TOK1) from Saccharomyces cerevisiae that contains two P domains within one continuous polypeptide. Xenopus laevis oocytes expressing the channel exhibit a unique, outwardly rectifying, K(+)-selective current. The channel is permeable to outward flow of ions at membrane potentials above the K+ equilibrium potential; its conduction-voltage relationship is thus sensitive to extracellular K+ ion concentration. In excised membrane patches, external divalent cations block the channel in a voltage-dependent manner, and their removal in this configuration allows inward channel current. These attributes are similar to those described for inwardly rectifying K+ channels, but in the opposite direction, a previously unrecognized channel behaviour. Our results identify a new class of K+ channel which is distinctive in both its primary structure and functional properties. Structural homologues of the channel are present in the genome of Caenorhabditis elegans.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View