- Main
Exciton Gas Transport through Nanoconstrictions.
Published Web Location
https://doi.org/10.1021/acs.nanolett.9b01877Abstract
An indirect exciton is a bound state of an electron and a hole in spatially separated layers. Two-dimensional indirect excitons can be created optically in heterostructures containing double quantum wells or atomically thin semiconductors. We study theoretically the transmission of such bosonic quasiparticles through nanoconstrictions. We show that the quantum transport phenomena, for example, conductance quantization, single-slit diffraction, two-slit interference, and the Talbot effect, are experimentally realizable in systems of indirect excitons. We discuss similarities and differences between these phenomena and their counterparts in electronic devices.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-