Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Discriminative random field segmentation of lung nodules in CT studies.

Abstract

The ability to conduct high-quality semiautomatic 3D segmentation of lung nodules in CT scans is of high value to busy radiologists. Discriminative random fields (DRFs) were used to segment 3D volumes of lung nodules in CT scan data using only one seed point per nodule. Optimal parameters for the DRF inference were first found using simulated annealing. These parameters were then used to solve the inference problem using the graph cuts algorithm. Results of the segmentation exhibited high precision and recall. The system can be adapted to facilitate the process of longitudinal studies but will still require human checking for failed cases.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View