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Analyzing Flow Patterns in Unsaturated Fractured Rock of Yucca Mountain 
Using an Integrated Modeling Approach 

 
Yu-Shu Wu, Guoping Lu, Keni Zhang, L. Pan, and G. S. Bodvarsson 

 
 
Abstract 

This paper presents a series of modeling investigations to characterize percolation 

patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground 

repository site for storing high-level radioactive waste. The investigations are conducted 

using a modeling approach that integrates a wide variety of moisture, pneumatic, thermal, 

and isotopic geochemical field data into a comprehensive three-dimensional numerical 

model through model calibration. This integrated modeling approach, based on a dual-

continuum formulation, takes into account the coupled processes of fluid and heat flow 

and chemical isotopic transport in Yucca Mountain’s highly heterogeneous, unsaturated 

fractured tuffs. In particular, the model results are examined against different types of 

field-measured data and used to evaluate different hydrogeological conceptual models 

and their effects on flow patterns in the unsaturated zone. The objective of this work to 

provide understanding of percolation patterns and flow behavior through the unsaturated 

zone, which is a crucial issue in assessing repository performance.  

 

Index Terms: 1982 Hydrology: Groundwater Hydrology; 1983 Hydrology: Groundwater 

Transport; 1866 Hydrology: Unsaturated Zone. 

 

Key Words: unsaturated zone, fractured rock, Yucca Mountain, dual-continuum model, 

Richards’ equation, perched water. 
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1. Introduction 

Since the 1980s, the unsaturated zone (UZ) of the highly heterogeneous, fractured tuff at 

Yucca Mountain, Nevada, has been investigated by the U.S. Department of Energy as a 

possible repository site for storing high-level radioactive waste. Characterization of flow 

and transport processes in fractured rock of the Yucca Mountain UZ has received 

significant attention and generated tremendous interest in scientific communities over the 

last two decades. During this long and extensive study, many types of data have been 

collected from the Yucca Mountain UZ, and these data have helped to develop a 

conceptual understanding of various physical processes within the UZ system.  

 

The complexity of geological conditions and physical processes within the Yucca 

Mountain has posed a tremendous challenge for site-characterization effort, while 

quantitative evaluation of fluid flow, chemical transport, and heat transfer has proven to 

be essential. The need for quantitative investigations of flow and transport at the Yucca 

Mountain site has motivated a continual effort in developing and applying large, 

mountain-scale flow and transport models [e.g., Wu et al., 1999a and 2002a]. These 

numerical models have played a crucial role in understanding UZ fluid movement and 

assessing the effects of hydrogeological, geochemical, and thermal conditions on various 

aspects of the overall waste disposal system. Whereas laboratory studies and field 

experiments, however necessary, are limited in space and time, numerical modeling 

provides a powerful means to study physical processes on the temporal and spatial scales 

relevant to the understanding of nuclear waste disposal in a geological formation.  

 

The site characterization studies of the unsaturated tuff at the Nevada Test Site and at 

Yucca Mountain began in the late 1970s and early 1980s. Those early hydrological, 

geological, and geophysical investigations of Yucca Mountain and the surrounding 

region were conducted to assess the feasibility of the site as a geological repository for 

storing high-level radioactive waste and to provide conceptual understanding of UZ flow 

processes [Montazer and Wilson, 1984]. Soon after, as part of the continuing site 

characterization, theoretical studies were deemed necessary to quantitatively model 

unsaturated groundwater flow. The first numerical modeling effort was made in the 
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middle 1980s to simulate the natural state of the UZ underlying Yucca Mountain, using a 

two-dimensional site-scale model [Rulon et al., 1986]. This work was followed by a 

number of other modeling efforts, focused on more basic-level processes. Pollock [1986] 

developed a mathematical model for analyzing one-dimensional, vertical transport of 

energy, water, and air in unsaturated alluvium. Tsang and Pruess [1987] studied 

thermally induced convection phenomena near a high-level nuclear waste repository in 

partially saturated tuff, using a two-dimensional model. Weeks [1987] reported a study of 

gas flow in the Yucca Mountain UZ to explain air circulation as observed from 

boreholes.  

 

In the early 1990s, more progress was made in UZ model development. Wittwer et al. 

[1992, 1995] developed a three-dimensional (3-D) site-scale model that incorporated 

several geological and hydrological complexities, such as geological layering, degree of 

welding, fault offsets, and different matrix and fracture properties. The 3-D model 

handled fracture-matrix flow using an effective continuum method (ECM) and was 

applied to evaluate various assumptions concerning faults and infiltration patterns.  

 

Using the ECM concept, Ahlers et al. [1995a, 1995b] continued development of the UZ 

site-scale model with increased numerical and spatial resolution. Their studies considered 

more processes, such as gas and heat flow analyses, and introduced an inverse modeling 

approach for estimating model-input properties. However, more comprehensive UZ 

models were not developed until a couple of years later, when the UZ models were 

developed for total system performance assessment–viability assessment (TSPA-VA) 

[e.g., Wu et al., 1999a and 1999b; Bandurraga and Bodvarsson, 1999; Ahlers et al., 

1999]. Instead of the ECM, the TSPA-VA model used a dual-permeability numerical 

approach for handling fracture-matrix interaction and incorporated additional physical 

processes, such as perched-water occurrence through model calibration.  

 

The next generation of UZ models included those primarily developed for the TSPA-site 

recommendation (SR) calculations [e.g., Wu et al., 2002a; Moridis et al., 2003; Robinson 

et al., 2003]. These TSPA-SR models were enhanced from the TSPA-VA model. More 
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importantly, the newer models took into account the coupled processes of flow and 

transport in highly heterogeneous, unsaturated fractured porous rock, and were applied to 

analyzing the effect of current and future climates on radionuclide transport through the 

UZ system. The site-scale UZ flow and transport models developed during the site 

characterization of Yucca Mountain have built upon the past research as well as the 

above-referenced work and many other studies [e.g., McLaren et al., 2000; Robinson et 

al., 1996 and 1997; Viswanathan et al., 1998; Sonnenthal and Bodvarsson, 1999; Liu et 

al., 2003]. In general, the model development, benefiting significantly from extensive field 

and laboratory studies of the site, has followed an iterative or trial-and-error approach [Wu et 

al., 2002a]. As the research effort of the site characterization advances, modeling 

approaches have become more sophisticated and more comprehensive.  

 

This paper presents the results of our continuing effort to develop a realistic and 

representative UZ flow model to characterize the Yucca Mountain UZ system. More 

specifically, we focus on analyzing unsaturated flow patterns in the Yucca Mountain UZ 

under various climates and different hydrogeological conceptual models using an 

integrated modeling approach. This effort integrates different field-observed data, such as 

water potential, liquid saturation, perched water, gas pressure, chloride, and temperature 

logs into one single 3-D UZ flow and transport model. Using the dual-permeability 

modeling approach, the integrated modeling effort provides consistent model predictions 

for different, but inter-related hydrological, pneumatical, geochemical, and geothermal 

processes in the UZ. More importantly, such an integrated modeling exercise will 

improve the model’s capability and credibility in describing and predicting current and 

future conditions and processes of the UZ system. At the same time, the combined model 

calibration will present a consistent check on modeled percolation fluxes and reveal 

better insight into the UZ flow patterns.  

 

The modeling study of this work consists of (1) UZ model description; (2) model 

development and calibration using liquid saturation, water potential, perched water, and 

pneumatic data; (3) assessing percolation patterns and flow behavior using thermal and 

geochemical data; and (4) simulated percolation pattern analysis.  
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2. Hydrogeological Setting, Physical Process, and Conceptualization  

The areal domain of the UZ model encompasses approximately 40 km2 of the Yucca 

Mountain area, as shown in Figure 1. The UZ is between 500 and 700 m thick and 

overlies a relatively flat water table. The repository would be located in the highly 

fractured Topopah Spring welded tuff unit, more than 200 m above the water table. 

Geologically, Yucca Mountain is a structurally complex system of Tertiary volcanic 

rock. Subsurface hydrological processes in the UZ occur in a heterogeneous environment 

of layered, anisotropic, fractured volcanic rocks [Scott and Bonk, 1984]. These volcanic 

formations consist of alternating layers of welded and nonwelded ash flow and air-fall 

tuffs. The primary geological formationsin, beginning from the land surface down, are 

the Tiva Canyon, Yucca Mountain, Pah Canyon, and the Topopah Spring tuffs of the 

Paintbrush Group. Underlying these are the Calico Hills Formation, and the Prow Pass, 

Bullfrog, and Tram tuffs of the Crater Flat Group [Buesch et al., 1995].  

For hydrological investigations, the UZ geologic formations have been categorized into 

hydrogeologic units based primarily on their degree of welding [Montazer and Wilson, 

1984]. These units are classified as the Tiva Canyon welded (TCw) hydrogeologic unit; 

the Paintbrush Tuff nonwelded unit (PTn), consisting primarily of the Yucca Mountain 

and Pah Canyon members and their bedded tuffs; the Topopah Spring welded (TSw) unit; 

the Calico Hills nonwelded (CHn); and the Crater Flat undifferentiated (CFu) units. The 

hydrogeological units vary significantly in thickness and sloping over the model domain 

(Figure 2).  

 

Conceptual Model of UZ Flow 

Over the past two decades, extensive scientific investigations have been conducted for 

the site characterization of Yucca Mountain, including data collection from surface 

mapping, sampling from many deep and shallow boreholes, constructing underground 

tunnels, and field testing [e.g., Rousseau, 1998]. Figure 2 presents a typical geological 

profile along a vertical east-west transect of borehole UZ-14 (Figure 1), illustrating a 

conceptual model currently used to analyze UZ flow patterns as well as possible effects 

of faults and perched water on the UZ system. As illustrated in Figure 2, the ground 
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surface of the UZ is subject to spatially and temporally varying infiltration pulses from 

precipitation, which provide the water source for deep percolation into the UZ. Surface 

infiltration pulses are expected to move rapidly through the top, highly fractured TCw 

unit, with little attenuation in travel times. Once it enters the PTn, percolating water may 

be subject to very different processes, because the PTn unit has very different 

hydrogeologic properties than the TCw and TSw units, which display the low porosity 

and intensive fracturing typical of the densely welded tuffs. In contrast, with its high 

porosity and low fracture intensity, the PTn matrix has a large capacity for storing 

groundwater. As a result, moisture imbibing into the dry PTn matrix from rapid fracture 

flow of the TCw may result in a more uniform distribution of flux at the base of the PTn. 

In fact, the PTn’s capability of attenuating episodic percolation fluxes has been observed 

in field tests of water release into the PTn matrix [Salve et al., 2003].  

In addition, the possibility for capillary barriers exists at both upper and lower PTn 

contacts, as well as within the PTn layers [Montazer and Wilson, 1984; Wu et al. 2002b], 

because the large contrasts in rock properties exist across the interfaces of units and inner 

PTn layers. However, the extent of lateral flow diversion within the PTn remains a topic 

of debate. For example, a recent study using a conceptual model with transitional 

changes in rock properties argues that lateral diversion may be small [Flint et al., 2003].  

 

Perched Water 

Perched water has been encountered in a number of boreholes at Yucca Mountain, 

including UZ-14, SD-7, SD-9, SD-12, NRG-7a, G-2, and WT-24 (Figure 1). These 

perched-water locations are found to be associated with low-permeability zeolites in the 

CHn or the densely welded basal vitrophyre of the TSw unit, below the repository 

horizon. Perched water is another important mechanism impacting flow paths in the UZ 

units below the repository horizon.  

 

Perched water may occur where percolation flux exceeds the capacity of the geological 

media to transmit vertical flux in the UZ [Rousseau et al., 1998]. Several conceptual 

models have been investigated for explaining the genesis of perched water at Yucca 

Mountain [e.g., Wu et al., 1999b and 2002a]. Among them, the permeability-barrier 
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conceptual model has been used in UZ flow modeling studies since 1996  [Wu et al., 

1999b and 2002a]. In this conceptual model, both vertical and lateral water movement in 

the vicinity of the perched zones is considered to be controlled mainly by localized 

fracture and matrix permeability distributions. The main assumptions of the 

permeability-barrier conceptual model are that: (1) there are few large, vertically 

connected, potentially fluid-conducting fractures transecting the underlying low-

permeability units, (2) both vertical and horizontal permeabilities within and below 

perched-water zones are small compared to permeabilities outside perching zones, and 

(3) sufficient percolation flux (>1 mm/yr) exists locally.  

 

Faults 

In addition to possible capillary and permeability barriers, major faults in the UZ are also 

expected to play an important role in controlling percolation flux. Permeability within 

faults is much higher than that in the surrounding tuff [Montazer and Wilson, 1984]. 

Pneumatic permeability measurements taken along portions of faults revealed low air-

entry pressures, indicating that large fracture apertures are present in the fault zones. 

Highly brecciated fault zones may act as vertical capillary barriers to lateral flow. Once 

water is diverted into a fault zone, however, its high permeability could facilitate rapid 

vertical flow through the unsaturated system [Wang and Narasimhan, 1987; Wu et al. 

2002a]. In this modeling study, major faults are treated as intensively fractured zones.  

 

Heterogeneity 

A considerable amount of field data, obtained from tens of boreholes, two underground 

tunnels,  and hundreds of outcrop samples at the site, constrains the distribution of rock 

properties within different units. In general, field data indicate that the Yucca Mountain 

formation is more heterogeneous vertically than horizontally, such that layer-wise 

representations are found to provide reasonable approximations of the complex 

geological system. This is because many model calibration results using this 

approximation are able to match different types of observation data obtained from 

different locations and depths [e.g., Bandurraga and Bodvarsson, 1999; Ahlers et al., 

1999; Wu et al., 2002a].  
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In summary, as shown in Figure 2, the key conceptualizations and assumptions made in 

this study for constructing the hydrogeological model to analyze UZ flow patterns are as 

follows:  

Ambient water flow in the UZ system is at a quasi-steady state condition, subject to 

spatially varying net infiltration on the ground surface.  

Hydrogeological units/layers are internally homogeneous, unless interrupted by faults or 

altered.  

There may exist capillary barriers in the PTn unit, causing lateral flow.  

Perched water results from permeability barrier effects.  

Major faults serve as fast vertical flow pathways for laterally diverted flow. 

 

3. Numerical Modeling Approach and Model Description 

Because of the complexity of the UZ geological system and the highly nonlinear nature 

of governing equations for UZ flow and transport, numerical modeling approaches were 

used in this study. Numerical simulations were carried out using the TOUGH2 and 

T2R3D codes [Pruess, 1991; Wu et al., 1996]. Most UZ flow simulations in this study 

were performed using an unsaturated flow module of the TOUGH2 code, which solves 

Richards’ equation. Two active phases (liquid and gas) and heat flow was simulated 

using a two-phase fluid and heat flow module. Tracer and geochemical transport runs 

were carried out with the T2R3D code.  

 

3.1 Numerical Model Grids 

There are two 3-D numerical model grids used in this study, as shown in plan view in 

Figures 3a and 3b. The two 3-D UZ model grids were generated based on an integral 

finite-difference scheme [Pan et al., 2000], using an irregular, unstructured, 3-D control-

volume spatial discretization. The first numerical grid (Figure 3a) is called the UZ flow 

model grid, because it is primarily designed for model calibrations and investigations of 

UZ flow and transport. This 3-D model grid uses a refined mesh in the vicinity of the 

proposed repository, located near the center of the model domain, covering the region 

from Solitario Canyon to Ghost Dance faults, from west to east and north to beyond 
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Pagany Wash fault. Shown in its plan view in Figure 3b is the second 3-D model grid, 

covering a smaller model domain, called the thermal model grid, which is used for gas 

flow and ambient heat flow modeling. Also shown in Figures 3a and 3b are the locations 

of a number of boreholes, incorporated in model calibrations and analyses. In both model 

grids, faults are represented in the model by vertical or inclined 30 m wide zones. 

 

In Figures 3a and 3b, each gridblock in the x-y plane represents a vertical column defined 

in the 3-D grid. The 3-D flow model grid (Figure 3a) has about 2,042 mesh columns of 

both fracture and matrix continua along a horizontal grid layer, and 50 computational 

grid layers in the vertical direction, resulting in 250,000 gridblocks and 1,000,000 

connections in a dual-permeability grid. This 3-D flow grid is relatively large and 

requires extensive computational efforts for simulation of coupled two-phase flow and 

heat transfer. This is why we designed the second, relatively smaller grid, the 3-D 

thermal grid (Figure 3b). As shown in the plan view of Figure 3b, the thermal model grid 

domain covers approximately 20 km2 of the area. The thermal model grid of Figure 3b 

consists of 980 mesh columns of fracture and matrix continua, 86,440 gridblocks, and 

350,000 connections in a dual-permeability grid. Vertically, the thermal grid has an 

average of 45 computational grid layers. 

 

3.2 Modeling Fracture-Matrix Interaction 

Modeling fracture and matrix flow and interaction under multiphase, multicomponent, 

isothermal or nonisothermal conditions has been a key issue for simulating fluid and heat 

flow in the Yucca Mountain UZ. Different modeling approaches have been tested for 

handling fracture-matrix interaction at Yucca Mountain [Doughty, 1999]. The dual-

continuum (in particular, dual-permeability) concept has been the main modeling 

approach for modeling flow and transport in the Yucca Mountain UZ, because it is able 

to simulate transient matrix-fracture interaction and to describe matrix-to-matrix flow.  

 

The dual-permeability methodology considers global flow and transport occurring not 

only between fractures but also between matrix gridblocks. In this approach, the rock-

volume domain is represented by two overlapping (yet interacting) fracture and matrix 
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continua, and local fracture-matrix flow and transport is approximated as a quasi-steady 

state. When applied in this work, however, the traditional dual-permeability concept is 

first modified by using an active fracture model [Liu et al., 1998] to represent fingering 

effects of flow through fractures. This dual-permeability grid is then further modified by 

adding additional global fracture-matrix connections at the TCw-PTn and PTn-TSw 

interfaces and at boundaries of vitric units. This provides physical relations for fracture-

matrix flow transitions across these units. Note that vitric units in the CHn are handled as 

single-porosity matrix only. Therefore, the modeling approach is actually a physically 

based, hybrid dual-permeability model with a combination of dual-continuum and single-

porosity meshes. 

 

3.3 Model Input Parameters 

Since the Richards’ and two-active-phases flow equations are used in modeling 

unsaturated flow of water and air through fracture and matrix, relative permeability and 

capillary pressure curves are needed for the two media. In addition, other intrinsic 

fracture and matrix properties are also needed, such as porosity, permeability, density, 

and fracture geometric parameters, as well as rock thermal properties. In our modeling 

study, the van Genuchten models of relative permeability and capillary pressure functions 

[van Genuchten, 1980] are selected to describe variably saturated flow in both fracture 

and matrix media. The basic input rock and fluid-flow parameters used for each model 

layer or hydrogeological subunit include (1) fracture properties (frequency, spacing, 

permeability, van Genuchten α and m parameters, porosity, fracture-matrix interface 

area, and residual saturation); (2) matrix properties (porosity, permeability, the van 

Genuchten α and m parameters, and residual saturation); (3) thermal and transport 

properties (grain density, wet and dry thermal conductivity, grain specific heat, and 

tortuosity coefficients); and (4) fault properties for each of the major hydrogeologic units. 

 

The model input parameters of fractured and matrix rock were determined by two steps: 

(1) using field and laboratory measurements [Liu et al., 2003a] and 1-D model inversion 

results [Liu et al., 2003b] as initial guess, and (2) conducting a 3-D model forward 

calibration, as discussed in the next section. Adopting a hybrid, dual-permeability 
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approach, we treat all the geological units, including fault zones, as fracture-matrix 

systems (except for vitric zones, which is treated as a single-porosity medium). 

 

3.4 Model Boundary Conditions 

The ground surface of the mountain (or the tuff-alluvium contact in the area of significant 

alluvial cover) is taken as the top model boundary, while the water table is treated as the 

bottom model boundary. For flow simulations, net infiltration is applied to fractures 

along the top boundary using a source term. The bottom boundary at the water table is 

treated as a Dirichlet-type boundary. All the lateral boundaries, as shown in Figures 1, 3a, 

and 3b, are treated as no-flow (laterally closed) boundaries. No-flow boundaries should 

have little effect on moisture flow and radionuclide transport within or near the 

repository area (which is the focus of the current study) because these lateral boundaries 

are either far away from the repository or separated by vertical faults.  

 

Net infiltration of water, resulting from precipitation that penetrates the top-soil layer of 

the mountain, is the most important factor affecting the overall hydrological, geochemical 

and thermal-hydrological behavior of the UZ. Net infiltration is the ultimate source of 

groundwater recharge and deep-zone percolation through the UZ, and provides a vehicle 

for transporting radionuclides from the repository to the water table. To cover the various 

possible scenarios and uncertainties of current and future climates at Yucca Mountain, 

we have incorporated a total of nine net infiltration maps, provided by US Geological 

Survey (USGS) scientists [Hevesi and Flint, 2000; Forrester, 2000], into the model, 

These infiltration maps include present-day (modern), monsoon, and glacial transition—

three climatic scenarios, each of which consists of lower-bound, mean, and upper-bound 

rates, as summarized in Table 1 for average rate values over the flow model domain. 

As shown in Table 1, the average rate for present-day, mean infiltration with the flow 

model grid (Figure 3a) is 4.43 mm/yr distributed over the flow model domain, which is 

considered as a base-case infiltration scenario. In comparison, the thermal model grid has 

an average net infiltration rate of 3.58 mm/yr with the smaller domain (Figure 3b) for the 

present-day, mean infiltration case. Note that only the present-day, mean infiltration 

scenario is used with the thermal grid for gas flow and ambient thermal studies. The use 
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of the lower- and upper-bound infiltration values in flow modeling is intended to cover 

the uncertainties of possible higher or lower rates. The two future climatic scenarios, the 

monsoon and glacial transition periods, are used to account for possible higher 

precipitation and infiltration conditions in the future at Yucca Mountain. A plan view of 

the spatial distribution of the present-day mean infiltration map, as interpolated onto the 

flow model grid, is shown in Figure 4. The figure shows patterns of flux distributions 

with higher infiltration rates in the northern part of the model domain and along the 

mountain ridge east of the Solitario Canyon fault from south to north.  

 

4. Model Calibration  

The complexities of the heterogeneous geological formation at the Yucca Mountain UZ, 

combined with the many variables to account for in coupled UZ flow and transport 

processes, have posed serious challenges to numerical modeling investigations. For 

example, past modeling experiences have shown that one cannot simply input field- and 

laboratory-measured parameters or 1-D inverted properties directly into 3-D models and 

then expect reasonable simulation results to occur. This is because of the many 

uncertainties and significant differences in those input parameters with respect to their 

spatial and temporal scales of measurements. Without further calibration, those 

parameters observed or determined on one spatial scale are in general inappropriate for 

use in another scale model. In general, a proper model approximation of the actual 

physical system requires model calibration on the same model scale, from conceptual 

models to model parameters, as well as an accurate description of the physical processes 

involved.  

 

A total of 18 flow simulation scenarios are studied in this work, as listed in Table 2, with 

9 base cases and 9 alternatives. The difference between the base-case and alternative 

scenarios is the implementation of different PTn properties, i.e., using two different PTn 

conceptual models, as discussed in the next section for flow pattern analysis. The 

objectives of investigating a large number of 18 3-D flow scenarios is to cover various 

uncertainties and possibilities of the UZ flow patterns under current and future climates, 

as well as different conceptual models. Note that flow simulation results, with different 
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infiltration rates and parameter sets, correspond to steady-state solutions of flow 

simulation scenarios. 

 

The model calibrations of this work rely on field-measured matrix-liquid saturation, 

water potential, perched-water, and pneumatic data. Liu et al. [2003b] provide basic input 

parameters of fractures and matrix rock for starting modeling efforts in this paper. 

However, these properties were estimated through a series of 1-D model inversions, in 

which lateral diversion, perched water, and capillary barrier effects cannot be modeled. 

Use of a 3-D model allows further parameter adjustment to better match field observation 

data and avoid unphysical solutions. Among the various types of available data used in 

UZ model development, moisture data of matrix-liquid saturation and water potentials, 

measured from core samples or from in situ instruments, have been perhaps the most 

important data sources. Moisture data have been used to estimate model parameters since 

early model calibration efforts [e.g., Ahlers et al., 1995a and 1995b]. This data still 

provide a basis for current estimation of permeability and van Genuchten parameters 

through both 1-D inverse modeling [Liu et al., 2003b] and 3-D calibration [Wu et al., 

2003].  

 

This section presents calibrated parameters after adjustment through a series of 3-D 

model calibrations. The adjusted parameters include fracture-matrix properties of the top 

TSw layer, the entire PTn unit, and perched-water zones, and fracture permeabilities in 

the upper TSw layers. The 3-D model calibration efforts were performed in a series of 

forward 3-D simulations by starting with the three sets of 1-D model calibrated 

parameters, corresponding to three lower bounds, mean and upper bounds of infiltration 

rates [Liu et al., 2003b]. Then, model results were compared with field-observed data for 

matrix liquid, water potential, perched-water elevations, and gas-pressure measurements.  

 

Comparison with Liquid Saturation and Water Potential Data: Measured matrix-

liquid saturation, water-potential data and perched-water elevations are compared against 

3-D model results from the nine base-case simulations. Matrix-liquid saturation, water-

potential, and perched-water data used for these comparisons were taken from nine 
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boreholes (NRG-7a, SD-6, SD-7, SD-9, SD-12, UZ-14, UZ#16, WT-24 and G-2, Figures 

1 and 3a). In Figure 5, the comparisons of simulated and observed matrix-liquid 

saturation along the vertical column representing borehole SD-12 are shown, as 

examples, from the UZ flow model results with three mean infiltration scenarios. Figure 

6 displays a comparison with water potentials for WT-24. In general, the simulation 

results from the calibrated 3-D model are in good agreement with the measured saturation 

and water-potential profiles, as shown in Figures 5 and 6. 

 

Comparison with Perched-Water Data: As discussed above, to calibrate the 3-D UZ 

model against observed perched-water conditions at Yucca Mountain using a 

permeability-barrier concept [Wu et al., 1999b], some local modification of fracture-

matrix properties is necessary. At the same time, calibration against perched-water data 

provides a rare opportunity to estimate localized heterogeneity in fracture-matrix 

parameters near and at perched zones. Otherwise, this heterogeneity would be unknown.  

 

During perched-water calibration, measured perched-water elevations from all the 

perched-water boreholes are compared to 3-D model simulation results with the three 

mean infiltration rates of the three climates. Figures 5 and 6 also show two examples of 

comparisons between 3-D model-simulated and observed perched-water elevations along 

the two vertical columns, representing boreholes SD-12 and WT-24 by the 3-D UZ 

model. Model calibration results, as indicated by Figures 5 and 6, indicate that the 3-D 

model predicts fully saturated and zero water potential conditions at perched levels at the 

two boreholes, matching field measured perched-water data. 

 

Comparison with Pneumatic Data: Calibration of the 3-D UZ model to pneumatic data 

or gas flow provides a practical method of estimating large-scale fracture permeability 

within the 3-D UZ system. It should be mentioned that moisture data are found to be 

insensitive to fracture properties under ambient infiltration conditions and are not 

sufficient to estimate fracture permeability. In addition, a UZ flow model capable of  

modeling gas flow is particularly important for studies of thermal loading, air circulation, 

and transport of gaseous-phase radionuclides after waste emplacement in the Yucca 
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Mountain UZ.  

 

Gas flow calibration is carried out by matching field-measured pneumatic data from 

boreholes UZ-7a, SD-7, and SD-12. In doing so, fracture permeability needs to be 

modified from values estimated by the 1-D inverse model for certain 3-D model layers. 

In these calibrations, the gas flow model uses the UZ thermal model grid (Figure 3b), 

with similar boundary conditions for infiltration and temperature prescribed on the 

ground surface or water table as those in the flow model. Additional pneumatic boundary 

conditions are needed on the land-surface boundary for the gas phase, specifically as the 

time dependent gas-pressure conditions, based on measured atmospheric barometric 

pressure data. Since gas flow is a much more rapid process than liquid or heat flow in the 

UZ, water flow during pneumatic calibration is assumed to be at steady-state condition, 

determined by steady-state flow simulation results under the present-day mean 

infiltration scenario. 

 

Comparison of model simulation results and field-measured pneumatic data for boreholes 

UZ-7a is shown in Figure 7. The 3-D pneumatic simulation was run using a two-phase 

liquid and gas flow module of the TOUGH2 code [Pruess, 1991]. Model calibration 

results indicated that some modification of rock properties in several TSw layers was 

necessary to match field-observed gas pressures. In particular, the fracture permeability 

of several TSw subunits needs to be reduced by a factor of 15. The lower fracture 

permeability needed for the 3-D model may be attributed to the original fracture 

permeability being estimated from inversion of 1-D models, allowing for 1-D vertical 

flow paths only. In a 3-D model, some high-gas-flux channels may exist, such as through 

faults or highly fractured zones, and 3-D gas flow is able to follow these high-

permeability pathways with the least resistance. This also shows why 3-D model 

calibration is necessary for UZ model development. 

 

Figure 7 shows the comparisons of simulation results with field-measured values at the 

observation location of UZ-7a. In general, the simulation results demonstrate a good 

match with measurement data for this borehole. Many comparisons between model-
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simulated pressures and field measurements have been made with and without fracture-

permeability modifications, and the results show that the calibrated 3-D model has 

improved the match of observation data. Overall, a reduction by a factor of 15 for the 

TSw fracture permeability provides a better fit to observed pneumatic data for all 

locations and all time periods. The good match in Figure 7 indicates that after calibration, 

simulated gas pressures and their patterns of variations are consistent with observed 

values. 

 

5. Flow Patterns and Analyses 

The primary objective of modeling UZ flow at Yucca Mountain is to estimate percolation 

flux through the UZ system. This is because percolation is the most critical factor that 

affects overall repository performance under current and future climates. However, in situ 

percolation fluxes of unsaturated flow at the site are in general too low to measure 

directly. Therefore, indirect data and model results are instead needed to estimate these 

flux values and their distributions. Even with the considerable progress made so far in 

characterizing the Yucca Mountain UZ through intensive geological, hydrological, and 

chemical studies, accurate estimates of percolation flux within the UZ remain a scientific 

challenge.  

 

Past studies [e.g., Wu et al., 2002a] have shown that it is very difficult even to quantify 

the range of percolation fluxed by using hydrological data alone. Percolation patterns 

inside the UZ strongly depend on infiltration rates and their spatial distribution, among 

other factors. Therefore, over the past two decades, significant research effort has been 

devoted to estimating the infiltration rates [e.g., Flint et al., 1996; Hevesi and Flint, 

2000; Bodvarsson et al., 2003]. From these studies, the best estimates of present-day 

mean infiltration rates across the study area are in the range of several millimeters per 

year over the model domain. To further assess simulated UZ percolation fluxes for their 

relevance and reasonableness, this section presents percolation fluxes simulated by the 

calibrated 3-D UZ flow model and examines these percolation fluxes and their patterns 

using field-measured temperature and pore-water chloride data. 
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5.1 Simulated Percolation Fluxes  

Percolation Patterns at Repository: Percolation fluxes at the repository horizon, as 

predicted using 18 3-D UZ flow simulation results of Table 2 with nine infiltration maps  

(Table 1), are used for insight into percolation patterns.  Percolation flux is defined as 

total vertical-liquid mass flux through both fractures and matrix, and is converted to 

millimeter per year (mm/yr) per unit area using a constant water density. Figures 8 and 9 

present two examples of percolation fluxes simulated at the repository level for the 

present-day climate (Figure 4) with the base-case and alternative models, respectively. A 

comparison of the calculated repository percolation fluxes (Figures 8 and 9) with the 

surface infiltration map (Figure 4) indicates that percolation fluxes at the proposed 

repository are different from surface infiltration patterns.  

 

The major difference between percolation fluxes at the repository level (as shown in 

Figure 8) and surface infiltration patterns (Figure 4) are (1) flow focusing into faults in 

the very northern part of the model domain (with the north coordinate > 237,000 m); (2) 

flow diverted into or near faults located in the middle and southern model domain; and 

(3) about a 500 m lateral flow of the high infiltration zones to the east from south to north 

along the crest, as illustrated by “lateral flow scale” on Figure 8. Note that flow 

redistribution or focusing in the very northern part of the model domain (beyond the 

repository block) results from the repository grid-layer horizon laterally intersecting the 

CHn zeolitic and perched-water zones, where major flow paths are through faults. On the 

other hand, the simulation results (Figure 9) with the alternative flow model shows a high 

flux distribution very similar to that shown on infiltration maps (Figure 4) in the middle 

(except the very northern part) of the model domain along the north-south mountain 

crest. Thus, from the alternative model results, smaller lateral flow occurs in the PTn in 

the area above the repository. 

 

Further examination of all simulated fluxes at the repository level indicates that the lower 

the infiltration rates, the larger the lateral flow scales. This confirms that a substantial 

amount of large-scale lateral flow within the PTn unit is caused by capillary barriers. 

This is because the lower infiltration results in “drier” conditions and stronger capillary 
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forces [Wu et al., 2002b]. In comparison, the simulation results with the nine alternative 

flow fields show relatively small PTn lateral flow occurrence in the area above the 

repository.  

 

Percolation fluxes within the repository footprint can be further analyzed using a 

frequency distribution, displaying the average percentage of the repository area subject to 

a particular percolation rate. In this statistical analysis, percolation rates are normalized 

with respect to the average infiltration rate for the climate scenario. For example, 1 for 

the normalized flux rate corresponds to 4.43, 11.83, and 17.02 mm/yr (Table 1), 

respectively, for the three mean infiltration scenarios. The statistical information of flux 

distributions is important to smaller-scale modeling studies of flow and transport and 

flow-focusing phenomena through the UZ. Furthermore, the frequency distribution of 

normalized percolation fluxes within the repository horizon from the simulated 18 flow 

fields analyses can be used to define a cumulative flux-frequency distribution, as shown 

in Figure 10, displaying a regression curve that incorporates the 18 flow fields. The 

cumulative frequency of Figure 10 can be used, for example, in selecting ambient flow-

boundary conditions for smaller-scale modeling. The regression curve, with the equation 

given on the figure, may be used to correlate cumulative flux frequency within the 

repository with net infiltration rates for any future climatic scenarios. For example, use of 

the equation with x = 1, 2, and 5 gives results of 60%, 88%, and 99%. This indicates that 

60%, 88%, and 99% of repository blocks are subject to less than normalized fluxes of 1, 

2, and 5, respectively.  

 

Percolation Patterns below Repository: Percolation fluxes below the repository 

horizon play a critical role in controlling migration of radioactive waste from the 

repository to the water table. Figure 11 shows an example of the simulated percolation 

fluxes at the water table using the base-case model flow simulation with the present-day, 

mean infiltration scenario. When compared to percolation fluxes at the repository for the 

different model results and infiltration scenarios, percolation fluxes at the water table 

reveal more flow focusing into faults while traveling through the CHn unit. This is 

caused by the impact of perched water and low-permeability zeolitic units on flow paths 
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through these lower units.  

In addition to looking at flow simulation results for insight into flux patterns below the 

repository or at the water table, locations or areas where radionuclides are most likely to 

break through at the water table, or high-flux flow paths across the CHn, can also be 

identified using tracer-transport-simulation results. To assess tracer transport from the 

repository to the water table, two types of tracers, conservative (nonadsorbing) and 

reactive (adsorbing), are used in this study. An initial, constant-source concentration was 

specified for the fracture continuum gridblocks representing the repository, released at 

the starting time of simulation. In addition, hydrodynamic/mechanical dispersion through 

the fracture-matrix system is ignored, because sensitivity studies have indicated that 

mechanical dispersion has an insignificant effect [Wu et al., 2002a]. A constant molecular 

diffusion coefficient of 3.2 × 10-11 m2/s is used for the conservative component, and 1.6 

× 10-10 m2/s is selected for the reactive component. For the conservative tracer, Kd = 0, 

and for the reactive tracer, Kd = 4 cc/g for zeolitic matrix, Kd = 1 cc/g for other matrix 

rock in TSw and CHn units, and Kd = 0 for all fractures and other units.  

 

Tracer transport modeling was conducted using the T2R3D code [Wu and Pruess, 2000] 

using the same flow model grid (Figure 3a) and the dual-permeability approach for 

fracture-matrix interaction. In transport simulation, isothermal, unsaturated, steady-state 

flow fields of Table 2 were used as direct input to the T2R3D. 

 

Figures 12 and 13 show cumulative and normalized mass-arrival contours at the water 

table at 1,000 years for the conservative and reactive tracers, respectively. The 

cumulative and normalized mass arrival is defined as cumulative mass arrived at each 

grid column (or block) of the water table over time, normalized by the total initial mass 

released at the entire repository. The two figures present examples of breakthrough at the 

water table for conservative and reactive tracers under the present-day, mean infiltration 

rate (preq_mA). The two figures clearly indicate a significant difference between the two 

tracer modeling results in distributions of tracer mass arrivals along the water table. 

Without adsorption, in 1,000 years, Figure 12 shows that the conservative tracer has a 

much larger breakthrough area, covering the entire area directly below the repository 
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footprint, spreading to the east in the north. At this time, about 40% of the total initial 

mass of conservative tracers has arrived at the water table. At the same time only about 

2% of the reactive tracer breaks through, and only along and near the major faults (Figure 

13), owing to adsorption effects in the rock matrix. Similarly, breakthrough areas can be 

identified in different grid layers at different times, which will tell tracer transport paths 

or flow pathways below the repository. 

 

5.2 Flow Pattern Analyses 

Simulated percolation fluxes, as discussed above, are model results only. Their accuracy 

and relevance for representing actual UZ percolation needs further examination. This 

section presents a quantitative evaluation of such simulated percolation fluxes estimated 

from the large-scale 3-D UZ flow model. In particular, borehole temperature logs and 

pore-water chloride data are used to assess percolation patterns. This is because these two 

types of data are found to be more sensitive to deep percolation than other types of data 

collected from the site.  

 

Examination Using Borehole Temperature Data: The site-scale UZ modeling 

investigations have relied on an ambient thermal model to simulate large-scale heat flow 

and geothermal conditions in the Yucca Mountain UZ [Wu et al., 1999a]. In general, the 

thermal model provides ambient geothermal and moisture conditions, which in turn 

provide initial and boundary conditions for the mountain-scale or drift-scale thermal-

hydrological, thermal-hydrological-chemical, and thermal-hydrological-mechanical 

coupled-process models [Wu et al., 2003]. A recent study [Bodvarsson et al., 2003] 

shows that borehole temperature data are very useful in estimating percolation flux in the 

UZ and provide an independent examination of the ranges of estimated surface net 

infiltration rates and simulated percolation fluxes. 

In this study, heat flow simulations use the 3-D thermal model grid (Figure 3b), the 

calibrated UZ mode parameters, and present-day mean infiltration rate to simulate 

advective and conductive steady-state heat-transfer processes within the UZ. To account 

for variation in atmospheric temperature along the mountain surface, measured mean 

surface temperatures and a linear equation are used to correlate surface temperature with 
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elevation to describe initial surface temperature conditions [Wu et al., 1999a]. 

Temperature distributions at the bottom boundary of the thermal model are taken from 

deep-borehole-measured temperature profiles [Sass et al., 1988] for an initial guess of the 

water-table-boundary temperature contours. Then, initially estimated ground surface and 

water table temperatures are further calibrated by comparing model results with field 

temperature measurements. 

 

Under steady-state conditions, temperature profiles or geothermal gradients within the 

UZ are controlled by regional geothermal and weather conditions. In addition, these 

profiles and gradients are also related to formation thermal conductivity, net infiltration 

rates, and deep percolation fluxes. In thermal calculations, the surface net infiltration rate 

is fixed, based on the U. S. Geological Survey estimated map (Table 1), and the 

temperatures from the initially specified values along the top boundary are slightly 

adjusted. These adjustments result in a better match with observed borehole data. The 

rationale behind the adjustment is, first, that insufficient temperature data were collected 

along the UZ model boundaries for accurate description of temperature distributions 

along the boundaries. Second, under steady-state moisture and heat-flow conditions, both 

top and bottom boundary temperatures vary spatially, but are constant with time, which 

leaves room for adjustments to fit steady-state temperature profiles measured from 

boreholes. 

 

Figure 14 shows a model calibration result using measured temperature profiles in six 

boreholes (NRG-6, NRG-7a, SD-12, UZ#5, UZ-7a, and H-4) [Sass et al., 1988; Rousseau 

et al., 1998]. The figure shows a good match between measured and simulated 

temperatures for all six boreholes. Note that near the ground surface in the boreholes, 

observed temperatures show significant seasonal variations. However, these seasonal 

changes in surface temperature have little impact on steady-state heat flow or temperature 

profiles in the deeper (more than 20 m) UZ. This also indicates that the ambient 

geothermal conditions can be approximated as steady state on the large-scale model.  

 

Matching measured temperature profiles using simulation results along these boreholes at 
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different locations, as shown in Figure 14, implies that percolation fluxes (as well as their 

spatial distributions estimated by the 3-D UZ model) are within a reasonable range of the 

actual percolation in the UZ. Otherwise, the study [Bodvarsson et al., 2003] indicates that 

if percolation flux is increased or decreased by a factor of 3 or more, temperature profiles 

can generally no longer be fitted by a 3-D model. This is because on average, a 

percolation flux of 5 mm/yr carries out about 10 mW/m2 of downward heat convection, 

which is about 25% of upward heat conduction of ~ 40 mW/m2 [Sass et al., 1988] 

through the UZ by ambient geothermal gradients. Any large increase or decrease (e.g., by 

a factor of 2 or more) of percolation flux values in the model will lead to significant 

changes in net heat flow or geothermal gradients, such that model results will 

significantly deviate from observed temperature profiles. 

 

Examination Using Geochemical Isotopic Data: While field-measured moisture data 

are found to be relatively insensitive to percolation values, geochemical isotopic data, on 

the other hand, provide valuable information by which to analyze the UZ system and help 

to constraint or calibrate the UZ percolation flux range [Sonnenthal and Bodvarsson, 

1999]. For example, pore-water chemical concentration data can be used to calibrate the 

UZ model and to bound the infiltration fluxes [Liu et al., 2003; Wu et al., 2003]. The 

distribution of isotopic chemical constituents in both liquid and solid phases of the UZ 

system depends on many factors, such as hydrological and geochemical processes, 

surface precipitation, evapotranspiration, fracture-matrix interactions of flow and 

transport, and the history of climate changes and recharge. Therefore, the current status 

of chemical components existing within the UZ, as measured from the site, will reveal 

some of the past and current percolation patterns and their spatial variations.  

 

The methodology for analyzing percolation flux using geochemical pore-water chloride 

(Cl) data is based on modeling studies of chloride transport processes in the UZ under 

different infiltration scenarios. Measurements of chloride concentration data were made 

from pore waters extracted from field samples [Fabryka-Martin et al., 2002; Yang et al., 

1996 and 1998], collected from a number of surface-based boreholes and two 

underground tunnels, the exploratory studies facilities (ESF) and the enhanced 
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characterization of repository block (ECRB) (Figures 1 and 3a). The source recharge of 

chloride on the ground surface to the transport model is estimated using precipitation, 

runon, and runoff [Sonnenthal and Bodvarsson, 1999] and is imposed on the top 

boundary under different infiltration scenarios. The three present-day infiltration 

scenarios, representing lower bound, mean, and upper bound for infiltration rates of the 

present-day climate, are used in the study, resulting in a total of 6 flow fields used with 3 

base-case model flow fields (preq-lA, preq-mA, preq-uA) and 3 alternative model flow 

fields (preq-lB, preq-mB, and preq-uB).   

 

All Cl transport simulations were run using the T2R3D code for 100,000 years to 

approximate the current, steady-state condition under the infiltration scenarios 

considered. Chloride is treated as a conservative component transported through the UZ, 

subject to advection, diffusion, and first-order delay. The mechanical dispersion effect 

through the fracture-matrix system was ignored. A constant molecular diffusion 

coefficient of 2.032 × 10-9 m2/s is used for matrix diffusion for Cl and the half-life for 

radioactive decay is 301,000 years.  

 

The modeled chloride concentrations and their field measurements are represented in 

Figures 15, 16, and 17 for boreholes UZ-14 and SD-9, and one underground tunnel of 

ECRB, respectively. As shown in the three figures, modeled chloride distributions in the 

UZ are very sensitive to surface infiltration. Note that the base-case (-A) and alternative 

models (-B) use the same surface infiltration maps; therefore, the difference predicted by 

the two model results is a function of different percolation fluxes. Comparisons of 

simulated and measured chloride concentrations in the three figures indicate that the 

simulations with mean infiltration of the base-case model have overall better matches, 

than the alternative model. It is also shown that base-case model results with upper-

bound infiltration give reasonable matches, while model results using lower-bound rates 

give the poorest fit. In general, high net infiltration results in lower chloride 

concentrations, whereas lower net infiltration gives high chloride concentrations within 

the UZ. 

Figures 15 and 16 show that simulation of chloride transport with the base-case, lower-
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bound infiltration overestimates Cl concentrations on the top of the PTn and 

underestimates at the bottom layers (about an 800 m elevation). In borehole UZ-14 

(Figure 15), upper and mean results present similar match with observations. At borehole 

SD-9, Figure 16 demonstrates that neither lower infiltration rates nor alternative model 

results could match the measured Cl data well. Figure 17 presents sample comparisons 

between simulated and observed chloride concentrations along an underground tunnel 

(ECRB). Similar results are also shown along the ECRB tunnel (Figure 17), i.e., lower 

infiltration rates and the alternative model give poor results compared with observations. 

Comparisons between the model results on chloride distributions using the six different 

flow modeling scenarios can be useful in distinguishing which infiltration map or 

conceptual model is more appropriate for the site characterization. 

  

A comparison between simulated chloride distributions, simulated using the base-case 

model and the alternative models (Figures 15, 16, and 17), indicates that the base-case 

flow field simulation results consistently provide a better overall match with the observed 

chloride. The main difference between the base-case and alternative flow fields is 

whether there is large- or small-scale lateral flow within the PTn unit, while the base-case 

flow fields predict relatively large lateral diversion in general. The model calibration 

results with chloride data of this section further reveal that large lateral diversion may 

exist in the PTn unit. Therefore, pore-water chloride may provide additional evidence for 

understanding flow through the PTn, which has had a direct impact on chloride transport 

and distributions. 

 

6. Concluding Remarks 

This paper presents a large-scale modeling study to characterize percolation patterns in 

the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository 

site for storing high-level radioactive waste. The modeling studies are conducted using an 

integrated modeling approach, which incorporates a wide variety of field data into a 

comprehensive 3-D UZ flow model. The integrated modeling approach, based on a dual-

continuum formulation, takes into account the coupled processes of (fluid and heat) flow 

and (chemical isotopic) transport in Yucca Mountain’s highly heterogeneous, unsaturated 
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fractured tuffs.  

 

The model-simulated percolation fluxes are examined against different types of field-

measured temperature and pore-water chloride data to aid in the assessment of repository 

system performance. The modeling investigations are conducted to provide 

understanding of percolation patterns and flow behavior through the unsaturated zone, 

which is a crucial issue in assessing repository performance. In addition, this paper 

discusses the methodology used for developing the numerical model and conducting 

large-scale modeling investigations at Yucca Mountain, including model calibration 

procedures. 

Using various climate scenarios and two hydrogeological conceptual models of the PTn 

unit, the simulated percolation fluxes reveal several insights into complex flow patterns 

through the UZ system. First, there may exist significant lateral flow diversion to the 

eastern direction and flow focusing into major faults in the PTn unit, because of a 

capillary barrier effect. Second, all the flow-modeling cases also indicate significant 

lateral flow diversion occurring at the CHn, resulting from the presence of perched water 

or thick low-permeability zeolitic layers. Faults act as major flow paths through the CHn 

or below the repository horizon under the current conceptualization. The modeled 

percolation fluxes and their distributions show that fracture flow is dominant in the 

welded tuff, both at the potential repository horizon and at the water table.  

This study summarizes our current research effort to characterize UZ flow patterns at 

Yucca Mountain. Even with the significant progress made in quantitative evaluation of 

UZ flow and transport processes at the site using numerical models over the last two 

decades, there still exist a number of limitations and shortcomings with these models and 

their results. In general, accuracy and reliability of UZ site-scale models and simulation 

results are critically dependent on the accuracy of estimated model-related properties and 

other types of input parameters as well as hydrogeological conceptual models. The main 

limitations and uncertainties with the current UZ site-scale models are (1) the lack of in-

depth knowledge of the mountain system (including the geological and conceptual 

models and the availability of field and laboratory data), and (2) the approximations of a 

large volume-averaged modeling approach. As a result, continual research effort is still 
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needed toward a better understanding of the Yucca Mountain UZ system. 
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Table 1. Climate Scenarios and Infiltration Rates (mm/year) Averaged over the 

Flow Model Domain  

Climate Scenario Lower-Bound
Infiltration 

Mean 
Infiltration 

Upper-Bound 
Infiltration 

Present-Day/Modern 1.25 4.43 10.74 
Monsoon 4.43 11.83 19.23 

Glacial Transition 2.35 17.02 31.69 
 

Table 2. Nine Base-Case and Nine Alternative Simulation Scenarios Associated 
with Parameter Sets and Infiltration Maps  

Designation/Simulation* 

Base-Case Alternative  

Infiltration Rate/Climate Scenario 

 

preq_lA preq_lB Present-day, lower-bound infiltration 

preq_mA preq_mB Present-day, mean infiltration 

preq_uA preq_uB Present-day, upper-bound infiltration 

monq_lA monq_lB Monsoon, lower-bound infiltration 

monq_mA monq_mB Monsoon, mean infiltration 

monq_uA monq_uB Monsoon, upper- bound infiltration 

glaq_lA glaq_lB Glacial transition, lower-bound infiltration 

glaq_mA glaq_mB Glacial transition, mean infiltration 

glaq_uA glaq_uB Glacial transition, upper-bound infiltration 

* Note: A denotes base-case and B alternative flow scenarios; l, m, and u stand for lower, 
mean, and upper bounds of infiltration rates for each climate scenarios, respectively. 
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Figure 1. Plan view of the UZ model domain, showing the model boundary, the 
potential repository outline, major fault locations, the paths of the ESF and 
ECRB, and selected borehole locations 
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Figure 2. Schematic showing the conceptualized flow processes and effects of 

capillary barriers, major faults, and perched-water zones within a typical 
east-west cross section of the UZ flow model domain 
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Figure 3a. Plan view of the 3-D UZ flow model grid, showing the model domain, 
faults incorporated, repository layout, and several borehole locations 
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Figure 3b. Plan view of the 3-D thermal model grid showing a smaller model domain, 

used for modeling gas and heat flow 
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Figure 4. Plan view of net infiltration distributed over the 3-D UZ flow model grid 
for the present-day (base-case) mean infiltration scenario 
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Figure 5. Comparison of simulated and observed matrix-liquid saturations and 
perched-water elevations for borehole SD-12, using the simulation results 
for three mean infiltration rates of present-day (preq_mA), monsoon 
(monq_mA), and glacial transition (glaq_mA) climates 
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Figure 6. Comparison of simulated and measured matrix water potentials and 
perched-water elevations at borehole WT-24, using the present-day mean 
infiltration rate (preq_mA) 
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Figure 7. Comparison of simulated and observed gas pressure at borehole UZ-7a over 
a 60-day period 
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Figure 8. Simulated percolation fluxes at the repository horizon, using the present-
day, mean infiltration scenario, base-case model results (preq_mA) 
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Figure 9. Simulated percolation fluxes at the repository horizon, using the present-

day, mean infiltration scenario, alternative model results (preq_mB) 
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Figure 10. Cumulative flux distribution and range (as functions of normalized 
percolation flux within the repository) from the 18 flow fields (equation is 
valid for 0.05 < x < 10, with x being normalized flux –x-coordinates, and 
y is cumulative area percentage –y-coordinates, for normalized flux = x) 
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Figure 11. Simulated percolation fluxes at the water table, using the present-day, 
mean infiltration scenario, base-case model results (preq_mA) 



 44

6.000E-01
3.461E-01
1.997E-01
1.152E-01
6.645E-02
3.834E-02
2.212E-02
1.276E-02
7.360E-03
4.246E-03
2.449E-03
1.413E-03
8.152E-04
4.703E-04
2.713E-04
1.565E-04
9.029E-05
5.209E-05
3.005E-05
1.733E-05
1.000E-05

Nevada Coordinate E-W (m)

N
ev

ad
a

C
oo

rd
in

at
e

N
-S

(m
)

168000 170000 172000 174000

230000

232000

234000

236000

238000

So
lit

ar
io

C
an

yo
n

Fa
ul

t

D
rillhole W

ash
Fault

Pagany W
ash Fault

SeverW
ash

Fault

G
ho

st
D

an
ce

Fa
ul

t

B
ow

R
id

ge
Fa

ul
t

Im
br

ic
at

e
Fa

ul
t

Cumulative mass arrival at the water table
(1000 years, tc)

Normalized mass
arrival (%)

 

Figure 12. Simulated cumulative, normalized mass-arrival contours of a conservative 
tracer at the water table after 1,000 years, identifying potential 
breakthrough areas, using the present-day, mean infiltration scenario of 
the base-case model 
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Figure 13. Simulated cumulative, normalized mass-arrival contours of a 
reactive tracer at the water table after 1,000 years, identifying 
potential breakthrough areas, using the present-day, mean 
infiltration scenario of the base-case model. 
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Figure 14. Comparisons between measured and simulated ambient temperature 
profiles for six boreholes under the present-day mean infiltration rate 

 



 47

 

Cl- Concentration (mg/l)

El
ev

at
io

n
(m

)

101 102 103
700

800

900

1000

1100

1200

1300

1400

preq_uA
preq_uB
preq_mA
preq_mB
preq_lA
preq_lB
Field Data
Hydro. Unit
Perched Water

PTn

USW UZ-14

Q

TSw

CHn

 

Figure 15. Comparison between measured and simulated chloride concentration (mg/L) 
profiles at borehole UZ-14 for present infiltration with mean, upper, and 
lower bounds and mean glacial transition case  
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Figure 16. Comparison between measured and simulated chloride concentration (mg/L) 
profiles at borehole SD-9 for present infiltration with mean, upper, and 
lower bounds and mean glacial transition case  
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Figure 17. Comparison between measured and simulated chloride concentration (mg/L) 
profiles along the ECRB for present infiltration with mean, upper, and lower 
bounds  




