Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Enhanced Charge Carrier Transport in 2D Perovskites by Incorporating Single-Walled Carbon Nanotubes or Graphene

Abstract

Two-dimensional (2D) organic-inorganic (hybrid) perovskites are considered promising candidates to replace conventional three-dimensional (3D) perovskites for solar cell applications as they have good resistance against moisture and UV light. However, the use of 2D perovskite is associated with a significant decrease in power efficiency resulting from their low photogenerated charge carrier density and poor charge transport. To improve power efficiency in 2D perovskites, highly crystalline films (near-single-crystal quality) of 2D perovskite need to be synthesized where the alignment of the inorganic perovskite components is controlled to have vertical alignment with respect to the contacts to improve charge transport. In this work, we explored strategies to overcome this limitation by integrating 2D perovskite with single-walled carbon nanotubes or graphene to enable more efficient extraction of charge carriers toward electric contacts. Longer carrier lifetimes were achieved after the incorporation of the carbon nanostructures in the films, and at the cell level, power efficiency increased by 2-fold.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View