Skip to main content
eScholarship
Open Access Publications from the University of California

A computational model of responsibility judgments from counterfactual simulations and intention inferences

Creative Commons 'BY' version 4.0 license
Abstract

How responsible someone is for an outcome depends on what causal role their actions played, and what those actions reveal about their mental states, such as their intentions. In this paper, we develop a computational account of responsibility attribution that integrates these two cognitive processes: causal attribution and mental state inference. Our model makes use of a shared generative planning algorithm assumed to approximate people's intuitive theory of mind about others' behavior. We test our model on a variety of animated social scenarios in two experiments. Experiment 1 features simple cases of helping and hindering. Experiment 2 features more complex interactions that require recursive reasoning, including cases where one agent affects another by merely signaling their intentions without physically acting on the world. Across both experiments, our model accurately captures participants' counterfactual simulations and intention inferences, and establishes that these two factors together explain responsibility judgments.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View