Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Intra-beat biomarker for accurate continuous non-invasive blood pressure monitoring

Abstract

Accurate continuous non-invasive blood pressure (CNIBP) monitoring is the holy grail of digital medicine but remains elusive largely due to significant drifts in signal and motion artifacts that necessitate frequent device recalibration. To address these challenges, we developed a unique approach by creating a novel intra-beat biomarker (Diastolic Transit Time, DTT) to achieve highly accurate blood pressure (BP) estimations. We demonstrated our approach's superior performance, compared to other common signal processing techniques, in eliminating stochastic baseline wander, while maintaining signal integrity and measurement accuracy, even during significant hemodynamic changes. We applied this new algorithm to BP data collected using non-invasive sensors from a diverse cohort of high acuity patients and demonstrated that we could achieve close agreement with the gold standard invasive arterial line BP measurements, for up to 20 min without recalibration. We established our approach's generalizability by successfully applying it to pulse waveforms obtained from various sensors, including photoplethysmography and capacitive-based pressure sensors. Our algorithm also maintained signal integrity, enabling reliable assessments of BP variability. Moreover, our algorithm demonstrated tolerance to both low- and high-frequency motion artifacts during abrupt hand movements and prolonged periods of walking. Thus, our approach shows promise in constituting a necessary advance and can be applied to a wide range of wearable sensors for CNIBP monitoring in the ambulatory and inpatient settings.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View