Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

Dual-Band and Wideband Millimeter-Wave Phased Arrays for 5G Communication Systems

Abstract

Demands of multi-standard operation have risen in millimeter-wave 5G phased arrays, in order to achieve more band coverage, reduce fabrication and deployment costs and realize inter-band carrier aggregation. This dissertation investigates dual-band and wideband design approaches to realize multi-standard phased array systems. In the dual-band approach, a 32-element dual-band, dual-beam phased array is designed by integrating dual-band patch antennas with commercial narrowband beamformers. Another design introduces an 8-element dual-band, dual-polarized, dual-beam phased array targeted at compact system applications. Both designs achieve 26-29 GHz and 37-41 GHz operation. In the wideband phased array approach, a novel stacked wideband dipole antenna is developed and integrated with a wideband SiGe Tx/Rx beamformers to achieve operation of 23-46 GHz. A single-polarized 64-element array and a dual-polarized 8-element array are then demonstrated with state-of-the-art performance. The 64-element array achieves a maximum EIRP of 50 dBm at P1dB operation, and 8-element dual-pol. array achieves 29 dBm. Both arrays demonstrate less than 4% EVM when transmitting 64-QAM 5G OFDM signal with 6-8 dB backoff from P1dB.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View