Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

T lymphocytes from malignant hyperthermia-susceptible mice display aberrations in intracellular calcium signaling and mitochondrial function.

Abstract

Gain-of-function RyR1-p.R163C mutation in ryanodine receptors type 1 (RyR1) deregulates Ca2+ signaling and mitochondrial function in skeletal muscle and causes malignant hyperthermia in humans and mice under triggering conditions. We investigated whether T lymphocytes from heterozygous RyR1-p.R163C knock-in mutant mice (HET T cells) display measurable aberrations in resting cytosolic Ca2+ concentration ([Ca2+]i), Ca2+ release from the store, store-operated Ca2+ entry (SOCE), and mitochondrial inner membrane potential (ΔΨm) compared with T lymphocytes from wild-type mice (WT T cells). We explored whether these variables can be used to distinguish between T cells with normal and altered RyR1 genotype. HET and WT T cells were isolated from spleen and lymph nodes and activated in vitro using phytohemagglutinin P. [Ca2+]i and ΔΨm dynamics were examined using Fura 2 and tetramethylrhodamine methyl ester fluorescent dyes, respectively. Activated HET T cells displayed elevated resting [Ca2+]i, diminished responses to Ca2+ mobilization with thapsigargin, and decreased rate of [Ca2+]i elevation in response to SOCE compared with WT T cells. Pretreatment of HET T cells with ryanodine or dantrolene sodium reduced disparities in the resting [Ca2+]i and ability of thapsigargin to mobilize Ca2+ between HET and WT T cells. While SOCE elicited dissipation of the ΔΨm in WT T cells, it produced ΔΨm hyperpolarization in HET T cells. When used as the classification variable, the amplitude of thapsigargin-induced Ca2+ transient showed the best promise in predicting the presence of RyR1-p.R163C mutation. Other significant variables identified by machine learning analysis were the ratio of resting cytosolic Ca2+ level to the amplitude of thapsigargin-induced Ca2+ transient and an integral of changes in ΔΨm in response to SOCE. Our study demonstrated that gain-of-function mutation in RyR1 significantly affects Ca2+ signaling and mitochondrial fiction in T lymphocytes, which suggests that this mutation may cause altered immune responses in its carrier. Our data link the RyR1-p.R163C mutation, which causes inherited skeletal muscle diseases, to deregulation of Ca2+ signaling and mitochondrial function in immune T cells and establish proof-of-principle for in vitro T cell-based diagnostic assay for hereditary RyR1 hyperfunction.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View