Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Pass-back chain extension expands multimodular assembly line biosynthesis

Abstract

Modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzymatic assembly lines are large and dynamic protein machines that generally effect a linear sequence of catalytic cycles. Here, we report the heterologous reconstitution and comprehensive characterization of two hybrid NRPS-PKS assembly lines that defy many standard rules of assembly line biosynthesis to generate a large combinatorial library of cyclic lipodepsipeptide protease inhibitors called thalassospiramides. We generate a series of precise domain-inactivating mutations in thalassospiramide assembly lines, and present evidence for an unprecedented biosynthetic model that invokes intermodule substrate activation and tailoring, module skipping and pass-back chain extension, whereby the ability to pass the growing chain back to a preceding module is flexible and substrate driven. Expanding bidirectional intermodule domain interactions could represent a viable mechanism for generating chemical diversity without increasing the size of biosynthetic assembly lines and challenges our understanding of the potential elasticity of multimodular megaenzymes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View