- Main
Probing hydrogen-bond networks in plastic crystals with terahertz and infrared spectroscopy
Abstract
A molecular-level understanding of phase changes in hydrogen-bonded solid-state systems is of great importance in fields spanning thermal science to medical therapeutics. Polyols have recently emerged as prime targets for deployment, given their versatility in phase-induced changes, and occupy a deep space in eutectic solvents. Here, we explore the hydrogen-bond network of neopentyl glycol (NPG) with terahertz time-domain spectroscopy, attenuated total reflection spectroscopy in the far- and mid-infrared regions augmented by electronic structure calculations. A picture emerges where vibrational spectroscopy can exquisitely probe a crystalline to amorphous solid-solid phase transition while spectroscopy in the mid-infrared region provides a molecular picture of the phase transition. These methods are then applied to understand the thermal properties and phase changes in NPG upon incorporation of bis(trifluoromethane)-sulfonimide lithium salt, to demonstrate that vibrational spectroscopy can directly probe the disruption of hydrogen-bond networks in plastic crystals.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-